System of equations with Mathematica

AI Thread Summary
The discussion centers around the challenges of solving a complex system of equations using Mathematica. The user expresses dissatisfaction with Maple and seeks assistance with a system that includes a quartic equation and an inequality, noting that Mathematica may struggle due to the presence of five unknowns but only one equation and one inequality. It is suggested that while the equation can be rearranged to express one variable in terms of others, the solutions will be complicated and lengthy. The conversation highlights the limitations of Mathematica in handling such systems effectively. Ultimately, the complexity of the expressions and the number of variables make finding a straightforward solution difficult.
Siron
Messages
148
Reaction score
0
Hello!

I'm currently working with Maple but I do not really like the program. Is there someone with Mathematica who can run this system?

$$\left \{ \begin{array}{ll} 16x^4-40ax^3+(15a^2+24b)x^2-18abx+3b^2 = 0 \\ 4x^4+5a s \sqrt{v} x^2 - 8 s \sqrt{v} x^3 - b s \sqrt{v} x > 0 \end{array} \right.$$

If it would help $a<0$ and $s<0$.

Thanks!
 
Mathematics news on Phys.org
Hmm. Mathematica is not going to be able to solve your system fully, because you have five unknowns, but only one equation and one inequality. You can find $x$ in terms of $a$ and $b$, but that's a quartic, which will be horrendous. It'll take pages just to write down the solution. As for the inequality, I'm not sure Mathematica could glean much of anything from that.
 
Ackbach said:
Hmm. Mathematica is not going to be able to solve your system fully, because you have five unknowns, but only one equation and one inequality. You can find $x$ in terms of $a$ and $b$, but that's a quartic, which will be horrendous. It'll take pages just to write down the solution. As for the inequality, I'm not sure Mathematica could glean much of anything from that.

Thanks Ackbach! I knew I could expecting something like this. These ugly expressions keep coming ...
 
Siron said:
$$\left \{ \begin{array}{ll} 16x^4-40ax^3+(15a^2+24b)x^2-18abx+3b^2 = 0 \\ 4x^4+5a s \sqrt{v} x^2 - 8 s \sqrt{v} x^3 - b s \sqrt{v} x > 0 \end{array} \right.$$
With all those variables and 1 equation only, what is the problem statement?

The equation can be rearranged in terms of b (as example):

b = [-u +- SQRT(u^2 - 12v)] / 6
where:
u = 24x^2 - 18ax
v = 16x^4 - 40ax^3 + 15ax^2

So if x and a are givens, then you can solve for b.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top