I Tangent Bundle of Product is diffeomorphic to Product of Tangent Bundles

Amateur659
Messages
4
Reaction score
2
My apologies if this question is trivial. I have searched the forum and haven't found an existing answer to this question.

I've been working through differential geometry problem sets I found online (associated with MATH 481 at UIUC) and am struggling to show that T(MxN) is diffeomorphic to TM x TN.

My intuition is that I could set up the product of projection maps from MxN to M and MxN to N to form the diffeomorphism. However, I seem to be stuck on the implementation (which probably indicates gaps in my understanding of previous material).

Thanks for your assistance.
 
Physics news on Phys.org
This is the kind of question that requires (only) a precise application of all definitions. The sets are clearly identical:
$$
T(M\times N)= \bigcup_{(p,q)\in M\times N}\{(p,q)\} \times T_{(p,q)}(M\times N) = \bigcup_{p\in M} \{p\}\times T_{p}(M)\times \bigcup_{q\in N} \{q\}\times T_{q}(N)=T(M) \times T(N)
$$
Next, we need a differentiable structure on both. Differentiability is a local property. So we can pick a point ##(p,q)\in U\times V## from a contractible neighborhood. By defining it as ##U\times V## we already fixed the topology, namely the product topology. Now gather all local diffeomorphisms ##TU=U\times \mathbb{R}^n\, , \,TV=V\times \mathbb{R}^m## and combine them to a diffeomorphism ##T(U\times V)= U\times V \times \mathbb{R}^{n+m}.##
 
  • Like
Likes PhDeezNutz and Amateur659
Back
Top