If A is a p-vector and B is a (n-p)-vector, then the hodge dual, *A, is defined by:(adsbygoogle = window.adsbygoogle || []).push({});

[TEX] A\ \wedge\ B = (*A,B)E \ \ \forall B\in \Lambda ^{(n-p)} [/TEX], where E=[TEX]e_1 \wedge\ ... \ \wedge e_n [/TEX]

I am having trouble in deriving the tensor components of the dual (n-p)-vector - *A.

Specifically, I am getting stuck when I write down the components of the (n,0)-tensor on both sides and then comparing the coefficients - because, the LHS involves the antisymmetrization, [TEX] A^{[i_1 ... i_p}B^{j_1 ... j_{n-p} ] } [/TEX].

I got stuck with the LHS even when I took B to be just a simple (n-p)-vector of basis vectors. Because, when I do that, I get the following (n,0)-tensor on LHS...

[TEX]\frac{1}{n!} \sum_\sigma\ (-1)^\sigma\ A^{i_{\sigma (1)} ... i_{\sigma (p)}}\ \epsilon ^ {j_{\sigma (1)} ... j_{\sigma (n-p)}}\ \ e_{i_1}\otimes ... \otimes e_{i_p}\otimes e_{j_1} \otimes ... e_{j_{n-p}} [/TEX]

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Tensor components of a Hodge dual

Loading...

Similar Threads for Tensor components Hodge |
---|

A Tensor symmetries and the symmetric groups |

I Tensors vs linear algebra |

B Tensor Product, Basis Vectors and Tensor Components |

I Matrix for transforming vector components under rotation |

Insights What Is a Tensor? - Comments |

**Physics Forums | Science Articles, Homework Help, Discussion**