Thanks for catching that! I will make the corrections.

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Limit Series
Click For Summary
SUMMARY

The discussion centers on evaluating the limit of the sequence defined by the expression $$L_d=\lim_{n \to \infty} \left[\frac{\arctan{(n)}}{\pi +\arctan{(n)}}\right]$$ which converges to $\frac{1}{3}$. Participants clarify that L'Hopital's rule is not applicable since the limit is not an indeterminate form. The correct interpretation of the variable "n" as a sequence rather than "x" as a function is emphasized, along with the behavior of the arctangent function as $n$ approaches infinity, leading to the conclusion that $$\lim_{n\to\infty}\arctan(n)=\frac{\pi}{2}$$.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with the arctangent function
  • Knowledge of sequences versus functions
  • Basic principles of L'Hopital's rule
NEXT STEPS
  • Study the properties of the arctangent function and its limits
  • Learn about sequences and series in calculus
  • Review the application of L'Hopital's rule in different scenarios
  • Explore convergence tests for sequences and series
USEFUL FOR

Students and educators in calculus, mathematicians focusing on limits and sequences, and anyone interested in deepening their understanding of arctangent behavior in mathematical analysis.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{242.ws8.d}$
$$\displaystyle
L_d=\lim_{x \to \infty}
\left[\frac{\arctan{(n)}}{\pi +\arctan{(n)}}\right]
=\frac{1}{3}$$

$\text{L' didn't work}$

☕
 
Physics news on Phys.org
That's not an indeterminate form, so L'Hopital's rule does not apply. The limit may be found by evaluating the numerator and denominator separately. Do you see how?
 
karush said:
$\tiny{242.ws8.d}$
$$\displaystyle
L_d=\lim_{x \to \infty}
\left[\frac{\arctan{(n)}}{\pi +\arctan{(n)}}\right]
=\frac{1}{3}$$

$\text{L' didn't work}$

☕

First of all, this is not a series, as you aren't summing up terms. This is a sequence. Anyway

$\displaystyle \begin{align*} \frac{\arctan{(n)}}{\pi + \arctan{(n)}} &= \frac{1}{\frac{\pi}{\arctan{(n)}} + 1} \end{align*}$

What happens to the arctangent function as $\displaystyle \begin{align*} n \to \infty \end{align*}$?
 
Prove It said:
This is a sequence.

That's odd - it looks like a limit to me - possibly part of a convergence test for a series that is not given. Why do you think it's a sequence?
 
greg1313 said:
That's odd - it looks like a limit to me - possibly part of a convergence test for a series that is not given. Why do you think it's a sequence?

The convention is that when "n" is used as the variable, it's a sequence, while where "x" is used is a function.
 
Prove It said:
$\displaystyle \begin{align*} \frac{\arctan{(n)}}{\pi + \arctan{(n)}} &= \frac{1}{\frac{\pi}{\arctan{(n)}} + 1} \end{align*}$

What happens to the arctangent function as $\displaystyle \begin{align*} n \to \infty \end{align*}$?

$$\arctan(\infty)\implies\frac{\pi}{2}$$

$$\frac{1}{\frac{\pi}{\pi/2} + 1}
=\frac{1}{2+1}=\frac{1}{3}$$
 
karush said:
$$\arctan(\infty)\implies\frac{\pi}{2}$$

Actually, I think you'd want to write

$$\lim_{n\to\infty}\arctan(n)=\frac{\pi}{2}$$

Note that $\tan(u)$ is one to one over the interval $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ and that $\tan(u)\to\infty$ as $u\to\frac{\pi}{2}$.

So,

$$\lim_{n\to\infty}\arctan(n)=\lim_{u\to\pi/2}\arctan(\tan u)=\frac{\pi}{2}$$

Also, you're writing

$$\lim_{x\to\infty}$$

in several places where the limit is with respect to $n$, so you should be writing

$$\lim_{n\to\infty}$$
 

Similar threads

Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K