Hi guys,(adsbygoogle = window.adsbygoogle || []).push({});

I would like to understand why a circle (and in general a n-sphere) as a subset of R^2 (in general R^(n+1)) with the standard topolgy is considered a closed and a bounded set.

I think that this can be a closed set because its complement (the interior of the circle and the rest of the plane) is open. And could be bounded because it has a finite extension (but ths is very intuitive). I cannot figure out what is the interior, the closure or the boundary of this set.

Thank you for your help.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# The circle as a set closed and bounded

**Physics Forums | Science Articles, Homework Help, Discussion**