The Definition of Torque - a proof

AI Thread Summary
The discussion centers on understanding a proof of torque from David Morin's "Introduction to Classical Mechanics." Participants explore the concept of the "effectivity" of a force, denoted as g(F,x), and how scaling the force by a factor λ affects this effectiveness. It is established that the change in effectiveness per change in force depends only on the distance from the axis, leading to the conclusion that effectiveness is linearly dependent on the force and a function of distance. Clarifications regarding the mathematical notation and assumptions in the proof are sought, with one participant confirming their understanding of the relationship between the scaling of force and effectiveness. The conversation highlights the importance of peer assistance in grasping complex concepts in mechanics.
Shreya
Messages
187
Reaction score
64
Homework Statement
Please refer the image below.
Relevant Equations
Newton's Laws
I have been trying to understand this proof from the book 'Introduction to classical mechanics' by David Morin. This proof comes up in the first chapter of statics and is a proof for the definition of torque.
I don't understand why the assumption taken in the beginning of the proof is reasonable. A note given at the end tries to give some clarification, but I can't relate these 2 points.
Please be kind to help. :)
1683691085008.png
 
Physics news on Phys.org
How about this:
The "effectivity" of a force of magnitude F applied in a specified direction at x from the axis is ##g(F,x)##. Applying some multiple of F, ##\lambda F##, in the same direction and at the same point should have effectivity ##\lambda g(F,x)##, i.e. ##\lambda g(F,x)=g(\lambda F,x)##. Hence ##\frac{\partial g(F,x)}{\partial F}=\frac{\partial g(\lambda F, x)}{\partial F}##. Since every force in the specified direction can be represented by a suitable choice of ##\lambda##, this implies ##\frac{\partial g}{\partial F}## is a function of x only. Integrating, ##g=F f(x)+c## for some function ##f##.
Adding that a zero force should have zero effect leads to the result.
 
Sorry, but I don't quite understand the partial differential equation, @haruspex . Should'nt there be a ##\lambda## on the left.
 
Last edited:
Shreya said:
Sorry, but I don't quite understand the partial differential equation, @haruspex . Should'nt there be a ##\lambda## on the left.
Sorry, I didn't write the algebra correctly.
##\lambda g(F,x)=g(\lambda F,x)##. Hence ##\lambda\frac{\partial g}{\partial F}\vert_{F,x}=\lambda\frac{\partial g}{\partial F}\vert_{\lambda F, x}##.
Cancelling,
##\frac{\partial g}{\partial F}\vert_{F,x}=\frac{\partial g}{\partial F}\vert_{\lambda F, x}##.
Since every force in the specified direction can be represented by a suitable choice of ##\lambda##, this implies ##\frac{\partial g}{\partial F}## is a function of x only. Integrating, ##g=F f(x)+c## for some function ##f##.
 
Yes sir, I understood it now. Just to check if I got it properly, I'll try to summarise here. The 'effectiveness of rotation' of a force, taken as ##g(F,x)## is a function of the force F and the distance from the origin x. If the force be scaled by ##\lambda##, the effectiveness ##g(F,x)## must also be scaled by that factor. This implies that the change in effectiveness per change in F just depends on x (and not on the particular value of F). Therefore, effectiveness itself is a linearly dependent on f and some function of x. I might have lost some rigorousness here due to departure from mathematical notation, but I hope I have understood the idea properly.

I also wanted to correlate the assumption with the note 1 given at the end. From your explanation, ##\lambda g (F,x) = g (\lambda F, x)## means the same as the note, right?
 
Last edited:
Shreya said:
I hope I have understood the idea properly.
Yes, you get the idea.
Shreya said:
From your explanation, ##\lambda g (F,x) = g (\lambda F, x)## means the same as the note, right?
My explanation is an attempt to use the hint to arrive at the answer. Whether that's what the author had in mind I cannot be sure.
 
Thank you so much @haruspex for helping me out again. I had tried many resources to understand this question and all that had failed. You are doing a great help to all students in the world
 

Similar threads

Replies
11
Views
2K
Replies
8
Views
2K
Replies
25
Views
2K
Replies
39
Views
7K
Replies
6
Views
2K
Replies
4
Views
2K
Replies
17
Views
6K
Replies
23
Views
5K
Back
Top