MHB The endomorphism ring is a field

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Field Ring
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $R$ be a commutative ring with unit and $M$ be a $R$-module.

I want to show that the endomorphism ring $\text{End}_R(M)=\text{Hom}_R(M,M)$ of a simple $R$-module is a field. We have that $\text{End}_R(M)=\text{Hom}_R(M,M)=\{f:M\rightarrow M \mid f \ : \ R-\text{ homomorphism}\}$.

We have that since $M$ s simple, it is cyclic and isomorphic to $R/J$, where $J$ is a maximal ideal of $R$.

So, to show that the endomorphism ring is a field do we have to show that the mapping $R\rightarrow \text{End}_R(R/J)$ is an homomorphism with kernel $J$ ? (Wondering)
 
Physics news on Phys.org
Hi mathmari,

In http://mathhelpboards.com/linear-abstract-algebra-14/show-966-isomorphism-18576.html, you proved that if $R$ is a commutative ring with unity, then every nonzero homomorphism of simple $R$-modules is an isomorphism. Using that theorem, you can claim that every nonzero element of $\operatorname{End}_R(M)$ is an automorphism of $M$, and therefore invertible. Consequently, $\operatorname{End}_R(M)$ is a field.
 
Euge said:
In http://mathhelpboards.com/linear-abstract-algebra-14/show-966-isomorphism-18576.html, you proved that if $R$ is a commutative ring with unity, then every nonzero homomorphism of simple $R$-modules is an isomorphism. Using that theorem, you can claim that every nonzero element of $\operatorname{End}_R(M)$ is an automorphism of $M$, and therefore invertible. Consequently, $\operatorname{End}_R(M)$ is a field.

How do we know that there are non-zero homomorphisms? (Wondering)

Also, how do we know that there are invertible elements, when we know that every nonzero element of $\operatorname{End}_R(M)$ is an automorphism of $M$ ? (Wondering)
 
mathmari said:
How do we know that there are non-zero homomorphisms? (Wondering)
There may not be, in which case $\operatorname{End}_R(M)$ is the zero ring, which is a field.

mathmari said:
Also, how do we know that there are invertible elements, when we know that every nonzero element of $\operatorname{End}_R(M)$ is an automorphism of $M$ ? (Wondering)

Automorphisms of $M$ are bijections, and bijections have inverses.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 5 ·
Replies
5
Views
839
  • · Replies 3 ·
Replies
3
Views
776
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
994
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
962
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
1K
  • · Replies 21 ·
Replies
21
Views
1K