The Minimum Value of a Quadratic Function: A Question of Symmetry

  • Context: MHB 
  • Thread starter Thread starter Monoxdifly
  • Start date Start date
Click For Summary
SUMMARY

The quadratic function $$f(x)=x^2+2px+p$$ has a minimum value of –p when $$p\neq0$$. The axis of symmetry is given by $$a = -p$$. The calculation for $$a - f(a)$$ results in zero, confirming that the minimum value occurs at the axis of symmetry. However, if the problem intended to ask for $$a + f(a)$$, the result would be –4, which aligns with one of the provided multiple-choice answers.

PREREQUISITES
  • Understanding of quadratic functions and their properties
  • Knowledge of the axis of symmetry in parabolas
  • Familiarity with function evaluation and minimum value determination
  • Basic algebraic manipulation skills
NEXT STEPS
  • Review the properties of quadratic functions in detail
  • Study the derivation of the axis of symmetry for parabolas
  • Learn about the implications of minimum and maximum values in quadratic equations
  • Explore common errors in interpreting mathematical problem statements
USEFUL FOR

Mathematics students, educators, and anyone interested in understanding quadratic functions and their applications in problem-solving.

Monoxdifly
MHB
Messages
288
Reaction score
0
A quadratic function $$f(x)=x^2+2px+p$$ has the minimum value of –p with $$p\neq0$$. If the curve's symmetrical axis is x = a, then a – f(a) = ...
A. –6
B. –4
C. 4
D. 6
E. 8

Because the curve's symmetrical axis is x = a, then:
$$-\frac{2p}{2(1)}=a$$
–p = a

a – f(a) = –p + (–p) = 0

I got zero. Is there anything I did wrong?
 
Mathematics news on Phys.org
Monoxdifly said:
$a – f(a) = –p + (–p) = 0

$a - f(a) = {\color{red}-p - (-p)} = -p + p = 0$

agree with zero ... maybe recheck the original problem statement?
 
If the problem is indeed asking for $a - f(a)$ then the answer is zero. However ...

The minimum value occurs on the axis of symmetry. Therefore the minimum value is $f(a) = f(-p) = (-p)^2 + 2p(-p) + p = p-p^2$. But you are told that the minimum value is $-p$. Therefore $p-p^2 = -p$, and since $p\ne0$ it follows that $p=2$. Hence $a = -2$, and $f(a)$ is also $-2$. Therefore $a-f(a) = 0$, as we already knew. BUT, if the quetion was actually asking for $a\;{\color{red}+}\,f(a)$ then that would be $-2-2 = -4$, which has the advantage of being one of the multiple choices.

So I agree with skeeter that you should recheck the original problem statement, and in particular look again at whether it is actually asking for $a+f(a)$.
 
I checked the problem and it said a – f(a), so probably the writer didn't press the Shift button correctly when he/she intended to type "+".
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K