I The Nuances of Truth in Axioms and Premises

  • Thread starter Thread starter starstruck_
  • Start date Start date
  • Tags Tags
    Axioms Terminology
Click For Summary
The discussion centers on the distinction between premises and axioms in the context of deductive reasoning and mathematics. A premise is a statement assumed to be true based on prior knowledge, while an axiom is a foundational statement accepted without proof within a specific system. Although all axioms can serve as premises, not all premises qualify as axioms, as some may be false. The conversation also highlights the complexity of "truth" in axioms, using Euclid's parallel postulate as an example to illustrate how its truth can vary across different geometrical models. Understanding these nuances is crucial for grasping the foundational concepts in discrete mathematics.
starstruck_
Messages
185
Reaction score
8
Hey everyone,
I’m taking my first discrete math course this term and am kind of struggling with determining the difference between different terminology. As the title says, it’s specifically with premises and axioms. My professor’s notes begin with an introduction to premises as one of the two major components of a deductive argument. They state that the premise is a statement from a previous body of knowledge and is assumed to be true, and that the conclusion in a deductive argument is based on the assumption that the premise is true. As for axioms, axioms are briefly defined when discussing formalization. The notes state that an axiom is a statement that holds true. I’m trying to understand the difference between the two.
I’m not sure how correct my understanding is but it appears to me that an axiom and premise are similar?
The difference being that an axiom is simply a statement that holds true and is assumed to be true irrespective of proof. However for a premise, a premise may be a statement that comes from another proof (hence the previous body of knowledge), but an axiom may also be a premise if used within a deductive argument?

is this understanding correct, any clarification would be incredibly helpful!
 
Physics news on Phys.org
I thought an axiom was a fundamental statement that you assumed to be true as the basis for the mathematics. A theorem is something that you have previously proved, using the axioms. A premise is a provisional assumption that you assume as part of a proof. For example:

In standard number theory we have the Peano axioms as the basis of number theory. A theorem might be that addition is commutative, or that there are infinitely many primes. A premise might be that some number ##p## is a prime.

PS I've no way to know whether your professor is using this terminology.
 
  • Like
Likes FactChecker
Any axiom is a premise, but there are some premises that are not axioms. For example, sometimes you will use a premise that you know to be false and reason from that false premise to some contradiction, thus disproving the premise. Such a premise would not be used as an axiom.
 
  • Like
Likes FactChecker
Axioms are definitions of a specific system of knowledge. Premises are conditions of a specific argument. IMHO.
 
PeroK said:
I thought an axiom was a fundamental statement that you assumed to be true as the basis for the mathematics.
As @PeroK seems quite aware, the relevant notion of "truth" is more nuanced than one might suppose.

Consider Euclid's parallel postulate for example: "For any line and point not on that line there is exactly one line parallel to the given line that contains the given point". Is that axiom true or false?

It turns out that there are spherical geometries where that axiom is false. Given a point not on a given line, there are no parallel lines containing that point. It also turns out that there are hyperbolic geometries where the axiom is also false. Given a point not on a given line, there are infinitely many parallel lines containing that point. Meanwhile the flat two-space contemplated by Euclid is a [as far as we know] consistent geometry where the parallel postulate holds true.

Instead of asking whether an axiom is true we can ask instead about "truth in a model". The parallel postulate is false in a spherical model, false in a hyperbolic model and true in a flat model.

Then you have the problem of determining whether a model exists that satisfies the axioms.

Edit: Checked and found that Euclidean geometry is provably consistent.
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
Replies
7
Views
2K
  • · Replies 72 ·
3
Replies
72
Views
8K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 2 ·
Replies
2
Views
364
Replies
3
Views
5K
  • · Replies 14 ·
Replies
14
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K