Let says I have a matrix A with m rows and n columns, with m<n, from which I compute the null space. If the rank of A is smaller than m, then the null space of the transpose of A also exists. Is there any relation between the null space of a matrix and the null space of the transposed matrix? Can I find null(transpose(A)) from null(A) or I have to compute the nullspace again?(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# The nullspace of a transposed matrix

Loading...

Similar Threads for nullspace transposed matrix |
---|

I Eigenproblem for non-normal matrix |

A Eigenvalues and matrix entries |

A Badly Scaled Problem |

I Adding a matrix and a scalar. |

B How does matrix non-commutivity relate to eigenvectors? |

**Physics Forums | Science Articles, Homework Help, Discussion**