- #1
JILIN
- 10
- 0
Hi.
I would like to ask a question about Chapter 15 in Srednicki's QFT book.
In chapter 15, after eq. (15.12), he compares eq. (15.12)
## \mathrm{Im}\bm{\Delta}(k^2)=\frac{\mathrm{Im}\Pi (k^2)}{(k^2+m^2-\mathrm{Re}\Pi (k^2))^2 + (\mathrm{Im}\Pi (k^2))^2}##
with eq. (15.8)
##\mathrm{Im}\bm{\Delta}(k^2)=\pi \delta(k^2+m^2)+\pi\rho(-k^2).##
Then he gets eq. (15.13)
##\pi \rho(s)=\frac{\mathrm{Im}\Pi (-s)}{(-s+m^2-\mathrm{Re}\Pi (-s))^2 + (\mathrm{Im}\Pi (-s))^2}.##
Why does ##\pi \delta(k^2+m^2)## disappears?
I would like to ask a question about Chapter 15 in Srednicki's QFT book.
In chapter 15, after eq. (15.12), he compares eq. (15.12)
## \mathrm{Im}\bm{\Delta}(k^2)=\frac{\mathrm{Im}\Pi (k^2)}{(k^2+m^2-\mathrm{Re}\Pi (k^2))^2 + (\mathrm{Im}\Pi (k^2))^2}##
with eq. (15.8)
##\mathrm{Im}\bm{\Delta}(k^2)=\pi \delta(k^2+m^2)+\pi\rho(-k^2).##
Then he gets eq. (15.13)
##\pi \rho(s)=\frac{\mathrm{Im}\Pi (-s)}{(-s+m^2-\mathrm{Re}\Pi (-s))^2 + (\mathrm{Im}\Pi (-s))^2}.##
Why does ##\pi \delta(k^2+m^2)## disappears?