MHB The shifting of h in vertex form

  • Thread starter Thread starter miller1991
  • Start date Start date
  • Tags Tags
    Form Vertex
AI Thread Summary
The discussion clarifies the role of h in the vertex form of a quadratic function, emphasizing that a positive h value indicates a rightward shift and a negative h value indicates a leftward shift. Participants note that the confusion arises from the interpretation of the equations, particularly how subtracting a negative affects the sign of h. It is confirmed that the value of a does not directly affect h; rather, it influences the direction of the parabola. A common misunderstanding is addressed regarding the notation and the importance of consistent case sensitivity in mathematical symbols. Overall, the thread provides insights into correctly identifying h and its implications for graph shifts in quadratic functions.
miller1991
Messages
2
Reaction score
0
The Role of H in the quadratic function ( vertex form)

i get that this is how its written on a graph y=(x-2)^2+k
that the graph looks as if the value of h is positive as in +2 ( however its value is actually negative)
looks like it shifted right my textbook contradicts itself

y=3(x-1)^2 +2 or y=3(x-(-1))^2 +2

a positive ie x minus a negative ie -1 equals a positive ( thus h is positive and shifts right

the value of h is +1 thus there is a right shift 1 unit
( two positives make a negative, or subtracting a negative from a positive gives a positive )
for the example
y=-1(x-3)^2

i need to know if the value of a affects the value of h

y=-1(x-(-3))^2

if a is -1

we looking at
(x-(-3))^2 gives a positive h value
( two positives make a negative, or subtracting a negative from a positive gives a positive )

then its basically

-1(3) equals a negative ( as in a negative times a positive equals a negative) thus switches h to a negative vaule

h is -3 the function shifts left
and on the graph reads as -1(x+3)^2 or w.e (not sure if that part is right)

in short a good place for me to start is understanding if A in vertex form affects the value of H in regards to the shift of h i just need to know how to solve for the value of h
like
if the question is describe the shifting of h in this function
what does h do

and does a affect the value of h

textbook question
state the value of h and describe the shifting of the function

y=3(x-1)^2 +2
answer given H = 1 and shifts right 1 unity=-(x-3)^2
answer given
h= -3 and shifts left 3 units

as far as this book indicates a is affecting the h movement THANKS GUYS ! FOR HELPING ME GET further with this
w.e info you have to help me move forward would be appreciated.so is it possible that a does not affect the shifting of h
and these
(x-(-3))^2
invisible brackets actually mean multiplication and i am not adding and subtracting here to find the value of h
 
Last edited:
Mathematics news on Phys.org
miller1991 said:
y=3(x-1)^2 +2 or y=3(x-(-1))^2 +2
The book really doesn't contradict itself. It's that the second equation above is not the same as the first. It's merely a typo (albeit a very confusing one.) The second equation should be [math]y = 3( x - (+1) )^2 + 2[/math]. I don't know why they bothered with that.

I didn't spot any other problems except for this one.

-Dan

Addendum: You used H and h to represent a horizontal translation. Mathematics is case sensitive so H and h aren't the same. h is the usual symbol.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top