MHB The student made a mistake in his counting

Click For Summary
The discussion centers on proving that a student's calculation of the fraction m/n is incorrect due to a counting error. It begins with the assumption that the student's result is accurate, leading to a mathematical expression involving n and a decimal representation. The analysis shows that this results in a contradiction when examining the bounds of B and n, specifically that 6000B must be both less than and greater than certain values simultaneously. This paradox indicates that the student's answer cannot be correct. Therefore, it is concluded that a mistake was indeed made in the student's calculations.
Albert1
Messages
1,221
Reaction score
0
$m,n \in N ,and \,\, n\leq 100$

a student counts :

$\dfrac {m}{n}=A.a_1a_2a_3--------a_k167a_{k+1}---$

please prove :

the student's answer is not correct , there must have a mistake in his calculation !
 
Mathematics news on Phys.org
Re: the student made a mistake in his counting

suppose the student made no mistake then :
$10^k\times \dfrac {m}{n}=Aa_1a_2----a_k+0.167a_{k+1}---$
from above we know :$0.167a_{k+1}--- \times n \in N$
$\therefore 0.167a_{k+1}---=\dfrac {B}{n} ,\,\, here \,\, B\in N$
we get :$0.167\leq \dfrac{B}{n}<0.168$
or $167n\leq 1000B<168n<=> 1002n\leq 6000B <1008n$
for $n\leq 100$
$\therefore 0<6000B-1000n<800 ------(1)$
from other hand :$6000B-1000n >1000-----(2)$ (you know why?)
from (1) and (2) a paradox is created ,and we concluded
the student must have made a mistake
 
Last edited:
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
3K
  • · Replies 21 ·
Replies
21
Views
4K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K