The Union of Two Open Sets is Open

  • Context: MHB 
  • Thread starter Thread starter G-X
  • Start date Start date
  • Tags Tags
    Sets Union
Click For Summary
SUMMARY

The discussion confirms that the union of two open sets, A1 and A2, is indeed an open set. It establishes that for any point x in the union A1 ∪ A2, there exists an open ball B(x, r) contained within the union, satisfying the definition of an open set. The proof is validated by demonstrating that if x belongs to either A1 or A2, an appropriate radius r can be found such that B(x, r) is included in A1 ∪ A2. Consequently, the conclusion that A1 ∪ A2 is open is firmly established.

PREREQUISITES
  • Understanding of open sets in topology
  • Familiarity with the concept of open balls B(x, r)
  • Knowledge of set union operations
  • Basic principles of mathematical proof techniques
NEXT STEPS
  • Study the properties of open sets in metric spaces
  • Learn about the concept of closed sets and their relationship to open sets
  • Explore the implications of the union of multiple open sets
  • Investigate the definitions and properties of topological spaces
USEFUL FOR

Mathematicians, students of topology, and anyone interested in understanding the foundational concepts of open sets and their properties in mathematical analysis.

G-X
Messages
21
Reaction score
0
Let [Math]x ∈ A1 ∪ A2[/Math] then [Math]x ∈ A1[/Math] or [Math]x ∈ A2[/Math]

If [Math]x ∈ A1[/Math], as A1 is open, there exists an r > 0 such that [Math]B(x,r) ⊂ A1⊂ A1 ∪ A2[/Math] and thus B(x,r) is an open set.

Therefore [Math]A1 ∪ A2[/Math] is an open set.

How does this prove that [Math]A1 ∪ A2[/Math] is an open set. It just proved that [Math]A1 ∪ A2[/Math] contains an open set; not that the entire set will be open? This is very similar to the statement: An open subset of R is a subset E of R such that for every x in E there exists ϵ > 0 such that Bϵ(x) is contained in E.
 
Last edited:
Physics news on Phys.org
The point is that the argument is valid for every $x\in A_1\cup A_2$.

If $C = A_1\cup A_2$, we have proved that, for every $x\in C$, there is an open ball $B(x,r)\subset C$ (where $r>0$ depends on $x$). That is precisely the definition of an open set.
 
G-X said:
If [Math]x ∈ A1[/Math], as A1 is open, there exists an r > 0 such that [Math]B(x,r) ⊂ A1⊂ A1 ∪ A2[/Math] and thus B(x,r) is an open set.

Therefore [Math]A1 ∪ A2[/Math] is an open set.

Hi G-X, welcome to MHB!As castor28's pointed out, it's about the definition of an open set, which he effectively quoted.Additionally that proof is not entirely correct and it is incomplete.
It should be for instance:

If [Math]x ∈ A1[/Math], as $A1$ is open, there exists an $r > 0$ such that [Math]B(x,r) ⊂ A1[/Math] (from the definition of an open set), which implies that [Math]B(x,r)⊂ A1 ∪ A2[/Math].
If [Math]x ∈ A2[/Math], as $A2$ is open, there exists an $r > 0$ such that [Math]B(x,r) ⊂ A2⊂ A1 ∪ A2[/Math].
Therefore for all [Math]x ∈ A1∪ A2[/Math], there exists an $r > 0$ such that [Math]B(x,r) ⊂ A1 ∪ A2[/Math].

Thus [Math]A1 ∪ A2[/Math] is an open set.
 
I see, I think I had the misunderstanding that something from A2 might close A1.

But I don't think that is an issue you technically need to wrap your head around.

Because the definition states: We define a set U to be open if for each point x in U there exists an open ball B centered at x contained in U.

So, essentially looping over A1, A2 - making the reference that open balls exist at each of these points then all points in A1 ∪ A2 have open balls contained in the union thus by the definition it must be open.
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
16
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K