MHB So V is not vector over field \Bbb{R}

  • Thread starter Thread starter Another1
  • Start date Start date
  • Tags Tags
    Field Vector
Click For Summary
The discussion centers on whether the set V, defined as R^2 with specific operations for addition and scalar multiplication, qualifies as a vector space over the field R. The operation for addition is standard, but the scalar multiplication defined as k ⊙ u = (2ku_1, 2ku_2) deviates from the usual definition. A key point raised is that the additive inverse property does not hold, as shown by the calculation that (-u) + u does not equal the zero vector. Additionally, the condition for scalar multiplication where 1 ⊙ u must equal u for all u in R^2 is not satisfied, further confirming that V does not meet the criteria to be a vector space over R. Thus, V is not a vector space over the field R.
Another1
Messages
39
Reaction score
0
I don't understand, please ckeck

$$Let$$ $$V=\Bbb{R}^2$$ and $${u=(u_1,u_2), v=(v_1.v_2)}\in\Bbb{R}^2$$ , $${k}\in \Bbb{R}$$ define of operation $$u\oplus v = (u_1+v_1,u_2+v_2)$$ and $$k \odot u =(2ku_1,2ku_2)$$ check V is vector over field $$\Bbb{R}$$ ?
________________________________________________________________
I think
in a property of the additive inverse $$(-u)+u=0=u+(-u)$$

from define $$k \odot u =(2ku_1,2ku_2)$$
So $$(-1)u = (-1) \odot u =(2(-1)u_1,2(-1)u_2) = (-2u_1,-2u_2) $$
$$(-u)+u = (-2u_1,-2u_2) + (u_1,u_2)\ne 0$$
 
Physics news on Phys.org
Hi Another.

In a vector space $V$ over a field $F$, we need to have for every $v\in V$ that
$$1_F\cdot v\ =\ v$$
where $1_F$ is the multiplicative identity in $F$. Is this condition satisfied for the scalar multiplication $\odot$ in this problem? In other words, is
$$1\odot u\ =\ u$$
true for all $u\in\mathbb R^2$?
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
1K
Replies
4
Views
2K
Replies
14
Views
3K