Hi all, I need to understand these differential equations specially moving from the second order to the third order because i couldn't understand how they got to the result, what was exactly the principle:(adsbygoogle = window.adsbygoogle || []).push({});

$$ y'=f(x,y) $$

$$ y''=\frac{df}{dx}(x,y(x)) = f_{x}(x,y) + f_{y}(x,y)y' = f_{x}(x,y) + f_{y}(x,y)f(x,y) $$

$$ y'''=f_{xx}+2ff_{xy}+f_{yy}f^{2}+f_{x}f_{y}+ff_{y}^{2} $$

where $$ f_{x} $$ is the partial derivation of x and so for the similar other quantities.

please help me with it, thank you.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Third order differential equation

Tags:

**Physics Forums | Science Articles, Homework Help, Discussion**