This appears to be in direct violation of Carmichael's theorem.

  • Context: Graduate 
  • Thread starter Thread starter Whovian
  • Start date Start date
  • Tags Tags
    Theorem
Click For Summary
SUMMARY

The discussion centers on a perceived violation of Carmichael's theorem regarding the residues of a sequence mod 10n. The user derives that for any k coprime to 10n, k10n ≡ 1 (mod 10n), suggesting that λ(10n) divides 10n. However, according to Carmichael's theorem, λ(10n) equals φ(10n) = 4·10n-1, which does not divide 10n. The user seeks clarification on the error in their reasoning.

PREREQUISITES
  • Carmichael's theorem
  • Carmichael function (λ)
  • Euler's theorem
  • Modular arithmetic
NEXT STEPS
  • Study the implications of Carmichael's theorem on modular arithmetic
  • Explore the properties of the Carmichael function (λ) for composite numbers
  • Investigate the relationship between λ and φ functions in number theory
  • Review examples of modular exponentiation and their proofs
USEFUL FOR

Mathematicians, number theorists, and students studying modular arithmetic and the properties of the Carmichael function.

Whovian
Messages
651
Reaction score
3
In an attempt to prove a statement about the residues of a certain sequence mod ##10^n##, I've derived something which seems to be in direct violation of Carmichael's theorem. Of course, this can't be right, so can someone either explain what bit of my reasoning is wrong or why this isn't in violation of Carmichael's Theorem? First of all, let ##\lambda## be the Carmichael function, and let ##k## be coprime to 2 and 5.

First of all, notice that, by Euler's theorem, ##k^{4\cdot 5^{n-1}}\equiv1\pmod{5^n}## and ##k^{2^{n-1}}\equiv1\pmod{2^n}##. This makes it clear by induction that ##a\equiv b\pmod{4\cdot 5^{n-1}}\rightarrow k^a\equiv k^b\pmod{5^n}## and ##a\equiv b\pmod{2^{n-1}}\rightarrow k^a\equiv k^b\pmod{2^n}##.

Let ##n\ge2## and ##a\equiv b\pmod{10^n}##. Then, as ##\left.2^{n-1},4\cdot 5^{n-1}\right|10^n##, ##a\equiv b\pmod2^{n-1}## and ##a\equiv b\pmod5^{n-1}##, so ##k^a\equiv k^b\pmod{2^n}## and ##k^a\equiv k^b\pmod{5^n}##. Therefore ##k^a\equiv k^b\pmod{\mathrm{lcm}\left(2^n,5^n\right)}##, so ##k^a\equiv k^b\pmod{10^n}##.

Letting ##a=10^n## and ##b=0##, we get ##k^{10^n}\equiv k^0=1\pmod{10^n}##.

As this holds for all ##k## coprime to ##10^n##, this means ##\left.\lambda\left(10^n\right)\right|10^n##. (This should be obvious enough; I should be able to provide a proof if necessary.) However, as ##10^n## is not a power of 2, Carmichael's theorem tells us that ##\lambda\left(10^n\right)=\varphi\left(10^n\right)=4\cdot 10^{n-1}##, which doesn't divide ##10^n##.

Anyone know what's wrong here?
 
Mathematics news on Phys.org
Whovian said:
Carmichael's theorem tells us that ##\lambda\left(10^n\right)=\varphi\left(10^n\right)=4\cdot 10^{n-1}##

Anyone know what's wrong here?

According to Wikipedia, for ##n\geq4## $$\lambda(10^n)=\text{lcm}\left(\lambda(2^n), \lambda(5^n)\right)=\text{lcm}\left(\frac{1}{2}\varphi(2^n), \varphi(5^n)\right)=\ldots=5\cdot10^{n-2},$$ and everything is right with the universe?
 
  • Like
Likes   Reactions: 1 person
Ah. "A power of an odd prime, twice the power of an odd prime, and for 2 and 4."

*Collides hand with forehead to indicate frustration with self*
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K