Time average value of Spin operator

  • #1
From the book Introduction to Quantum Mechanics by Griffiths,. In the section 6.4.1 (weak field zeeman effect) Griffiths tells that the time average value of S operator is just the projection of S onto J while finding the expectation value of J+S

$$S_{avg}=\frac{(S.J)J}{J^2}$$

How to prove this?
 

Answers and Replies

  • #2
kuruman
Science Advisor
Homework Helper
Insights Author
Gold Member
9,959
3,124
Griffiths gives the standard argument in the vector model for the atom that when ##S## precesses rapidly about ##J##, the tranverse components time-average to zero and the operator can be replaced with a time-averaged operator which is the projection of ##S## on ##J##. Now if you have two regular old vectors, ##A## and ##B## with angle ##\theta## between them, you would write the projection of ##A## on ##B## as $$A_B=A\cos\theta=\frac{(\vec A \cdot \vec B)}{AB}A=\frac{(\vec A \cdot \vec B)}{B^2}B.$$
 
  • #3
Griffiths gives the standard argument in the vector model for the atom that when ##S## precesses rapidly about ##J##, the tranverse components time-average to zero and the operator can be replaced with a time-averaged operator which is the projection of ##S## on ##J##. Now if you have two regular old vectors, ##A## and ##B## with angle ##\theta## between them, you would write the projection of ##A## on ##B## as $$A_B=A\cos\theta=\frac{(\vec A \cdot \vec B)}{AB}A=\frac{(\vec A \cdot \vec B)}{B^2}B.$$
Im satisfied with the Griffith's explanation for the above expression, but out of curiosity I am looking for the mathematical proof of the same expression. While searching internet about this question, I saw "Wigner Eckart Theorem" could be used to find this expectation value, but I don't know how? Any idea how to do that?
 
  • #4
kuruman
Science Advisor
Homework Helper
Insights Author
Gold Member
9,959
3,124
Im satisfied with the Griffith's explanation for the above expression, but out of curiosity I am looking for the mathematical proof of the same expression. While searching internet about this question, I saw "Wigner Eckart Theorem" could be used to find this expectation value, but I don't know how? Any idea how to do that?
I believe that ##\vec S_{avg}## is an operator, not an expectation value. If by "mathematical proof" you mean "Starting with an expression for the time-averaged spin operator, use the Wigner-Eckart theorem to show that $$
\vec{S}_{avg}=\frac{(\vec S \cdot \vec J)\vec J}{J^2}$$ in the weak field approximation", the answer is "no I don't have an idea how to do that."
However, you don't need the Wigner-Eckart theorem to find the expectation value ##<\vec S_{avg}>.~## Just follow Griffiths, equations 6-73 to 6.75.
 
  • Like
Likes BvU

Related Threads on Time average value of Spin operator

  • Last Post
Replies
3
Views
1K
Replies
7
Views
1K
  • Last Post
Replies
3
Views
3K
  • Last Post
Replies
2
Views
1K
  • Last Post
Replies
7
Views
1K
Replies
2
Views
1K
Replies
6
Views
2K
Replies
7
Views
2K
Replies
2
Views
5K
Top