I Time dependence of kinetic energy in Lagrangian formulation

AI Thread Summary
Kinetic energy can depend explicitly on time within the Lagrangian formulation if the inertial Cartesian coordinates are functions of generalized coordinates that also vary with time. This scenario typically arises in non-inertial reference frames. The relationship is established through the time derivative of position, which incorporates both the generalized coordinates and their time derivatives. Consequently, the expression for kinetic energy becomes explicitly time-dependent. This highlights the complexity of kinetic energy in non-inertial frames within Lagrangian mechanics.
Ahmed1029
Messages
109
Reaction score
40
Could kinetic energy possibly depend explicitly on time in the lagrangian for some arbitrary set of generalized coordinates?
 
Physics news on Phys.org
Yes, if the inertial Cartesian coordinates as functions of the generalized coordinates depend explicitly on time (describing the motion in a non-inertial frame of reference) you get from
$$\vec{x}=\vec{x}(q^k,t), \quad k \in \{1,\ldots,f \}$$
the time derivative (Einstein summation convention applies)
$$\dot{\vec{x}}=\dot{q}^k \partial_k \vec{x} + \partial_t \vec{x}$$
and thus
$$T=\frac{m}{2} \dot{\vec{x}}^2 = \frac{m}{2} \left (\dot{q}^k \partial_k \vec{x} + \partial_t \vec{x} \right)^2,$$
which is in general explicitly time dependent.
 
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/
Back
Top