I Time dependence of kinetic energy in Lagrangian formulation

AI Thread Summary
Kinetic energy can depend explicitly on time within the Lagrangian formulation if the inertial Cartesian coordinates are functions of generalized coordinates that also vary with time. This scenario typically arises in non-inertial reference frames. The relationship is established through the time derivative of position, which incorporates both the generalized coordinates and their time derivatives. Consequently, the expression for kinetic energy becomes explicitly time-dependent. This highlights the complexity of kinetic energy in non-inertial frames within Lagrangian mechanics.
Ahmed1029
Messages
109
Reaction score
40
Could kinetic energy possibly depend explicitly on time in the lagrangian for some arbitrary set of generalized coordinates?
 
Physics news on Phys.org
Yes, if the inertial Cartesian coordinates as functions of the generalized coordinates depend explicitly on time (describing the motion in a non-inertial frame of reference) you get from
$$\vec{x}=\vec{x}(q^k,t), \quad k \in \{1,\ldots,f \}$$
the time derivative (Einstein summation convention applies)
$$\dot{\vec{x}}=\dot{q}^k \partial_k \vec{x} + \partial_t \vec{x}$$
and thus
$$T=\frac{m}{2} \dot{\vec{x}}^2 = \frac{m}{2} \left (\dot{q}^k \partial_k \vec{x} + \partial_t \vec{x} \right)^2,$$
which is in general explicitly time dependent.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Let there be a person in a not yet optimally designed sled at h meters in height. Let this sled free fall but user can steer by tilting their body weight in the sled or by optimal sled shape design point it in some horizontal direction where it is wanted to go - in any horizontal direction but once picked fixed. How to calculate horizontal distance d achievable as function of height h. Thus what is f(h) = d. Put another way, imagine a helicopter rises to a height h, but then shuts off all...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top