Time dilation for a clock thrown vertically

Click For Summary
SUMMARY

The discussion focuses on the analysis of time dilation for a clock thrown vertically, utilizing both Special Relativity (SR) and General Relativity (GR). The equations provided include the Minkowski metric for SR, expressed as $$c^2dτ^2=−ds^2=c^2dt^2−dz^2$$, and the weak field approximation for GR, represented as $$ds^2=−(1+\frac{2gh}{c^2})c^2dt^2+dz^2$$. Key insights include the importance of correctly interpreting the contributions of SR and GR metrics without conflating their effects. A typographical error in the time dilation equation was identified, emphasizing the need for careful dimensional analysis.

PREREQUISITES
  • Understanding of Special Relativity (SR) principles and equations
  • Familiarity with General Relativity (GR) concepts and weak field approximations
  • Knowledge of calculus, particularly integration techniques
  • Ability to interpret and manipulate physical equations involving time and motion
NEXT STEPS
  • Study the derivation of the Minkowski metric in Special Relativity
  • Explore the weak field approximation in General Relativity
  • Learn about the implications of gravitational time dilation
  • Investigate the mathematical techniques for simplifying integrals in physics
USEFUL FOR

Physicists, students of relativity, and anyone interested in the mathematical foundations of time dilation in both Special and General Relativity.

gnieddu
Messages
24
Reaction score
1
Homework Statement
Two clocks are placed on the earth's surface. One is kept still while the other is thrown upwards with an initial small velocity ##v_0##. How will the time measurements differ between the two clocks according to SR only and to GR only?
Relevant Equations
Equation describing the motion of a body in earth's gravitational field following Newton's laws: ##z=v_0t-\frac{1}{2}gt^2##

Proper time under Minkowski metric (with (+, -, -, -) signature): ##c^2d{\tau}^2=-ds^2=c^2dt^2-dz^2##
The non-moving clock will see the other one move upwards and land as predicted by Newton's laws, so using the equation ##z=v_0t-\frac{1}{2}gt^2##, and assuming the moving clock starts at ##t=0##, it will land at ##t=\frac{2v_0}{g}##.

Now, using SR only, and the Minkowski metric (with signature (-,+,+,+)) the time ##\tau## measured by the moving clock is obtained by using the equation:

$$c^2dτ^2=−ds^2=c^2dt^2−dz^2$$

where dz can be obtained from the equation of motion by differentiating:

$$dz=d[v_0t−\frac {1} {2} gt^2]=(v_0−gt)dt$$

In the end, we need to evaluate:

$$τ=\frac {1} {c} \int_0^{\frac {2v_0}{g}}[c^2−(v_0−gt)^2]dt $$

If we consider GR only, the solution follows the same line, but the metric would be the one for the weak field approximation:

$$ds^2=−(1+\frac{2gh}{c^2})c^2dt^2+dz^2$$

with the added complexity of expressing h as ##v_0t-\frac{1}{2}gt^2##.

In both cases, the integrals are not nice, but can possibly be simplified by using the approximation ##\sqrt{1+x}=1+\frac{x}{2}##. All of this, of course, if my plan of action makes sense and I'm not missing anything.

Thanks in advance

Gianni
 
Physics news on Phys.org
gnieddu said:
Now, using SR only, and the Minkowski metric (with signature (-,+,+,+)) the time ##\tau## measured by the moving clock is obtained by using the equation:

$$c^2dτ^2=−ds^2=c^2dt^2−dz^2$$

where dz can be obtained from the equation of motion by differentiating:

$$dz=d[v_0t−\frac {1} {2} gt^2]=(v_0−gt)dt$$

In the end, we need to evaluate:

$$τ=\frac {1} {c} \int_0^{\frac {2v_0}{g}}[c^2−(v_0−gt)^2]dt $$
There is an important typographical error in the last equation. Note that the right-hand side as written does not have the dimensions of time. Otherwise, I think this is correct for the "SR only" calculation.

gnieddu said:
If we consider GR only, the solution follows the same line, but the metric would be the one for the weak field approximation:

$$ds^2=−(1+\frac{2gh}{c^2})c^2dt^2+dz^2$$

with the added complexity of expressing h as ##v_0t-\frac{1}{2}gt^2##.
OK. It's not clear to me what they mean by "GR only". In the above expression, the ##dz^2## term will reproduce the "SR only" contribution. By "GR only" they might mean the contribution due to only the ##(1+\frac{2gh}{c^2})c^2dt^2## part of the expression above. I don't know.

gnieddu said:
In both cases, the integrals are not nice, but can possibly be simplified by using the approximation ##\sqrt{1+x}=1+\frac{x}{2}##.
Yes.
gnieddu said:
All of this, of course, if my plan of action makes sense and I'm not missing anything.
I think you are on the right track.
 
  • Like
Likes   Reactions: gnieddu and PeroK
TSny said:
There is an important typographical error in the last equation. Note that the right-hand side as written does not have the dimensions of time. Otherwise, I think this is correct for the "SR only" calculation.OK. It's not clear to me what they mean by "GR only". In the above expression, the ##dz^2## term will reproduce the "SR only" contribution. By "GR only" they might mean the contribution due to only the ##(1+\frac{2gh}{c^2})c^2dt^2## part of the expression above. I don't know.Yes.

I think you are on the right track.
Hi TSny, thanks for your feedback (and apologies for my late reply). You're right about the typo in my formula: the expression under the integral should be square-root-ed. Regarding the meaning of "GR only", my assumption is that I should compute the time dilation using only the GR metric vs. also considering special relativistic effects connected with the clock's speed (i.e. the ##\sqrt{1-\frac{v^2}{c^2}}## factor normally found in SR). But perhaps I'm only unnecessarily messing up things here...
 
gnieddu said:
Regarding the meaning of "GR only", my assumption is that I should compute the time dilation using only the GR metric vs. also considering special relativistic effects connected with the clock's speed (i.e. the ##\sqrt{1-\frac{v^2}{c^2}}## factor normally found in SR). But perhaps I'm only unnecessarily messing up things here...
The GR metric ##d\tau^2=(1+\frac{2gh}{c^2})dt^2-dz^2/c^2## includes the SR effect of "moving clocks run slow". For example, imagine letting the gravitational acceleration ##g## go to zero in the metric. Then the metric reduces to the SR Minkowski metric ##d\tau^2=dt^2-dz^2/c^2 ##. Thus ##d\tau= dt\sqrt{1 - (v_z/c)^2}## which is the SR time dilation.

So, in the GR metric, the ##dz^2/c^2## accounts for "moving clocks run slow". The ##\frac{2gh}{c^2}## part takes care of "clocks at higher gravitational potential run faster". GR handles everything. We wouldn't add the SR effect to the result of the GR metric.
 
  • Like
Likes   Reactions: gnieddu
TSny said:
The GR metric ##d\tau^2=(1+\frac{2gh}{c^2})dt^2-dz^2/c^2## includes the SR effect of "moving clocks run slow". For example, imagine letting the gravitational acceleration ##g## go to zero in the metric. Then the metric reduces to the SR Minkowski metric ##d\tau^2=dt^2-dz^2/c^2 ##. Thus ##d\tau= dt\sqrt{1 - (v_z/c)^2}## which is the SR time dilation.

So, in the GR metric, the ##dz^2/c^2## accounts for "moving clocks run slow". The ##\frac{2gh}{c^2}## part takes care of "clocks at higher gravitational potential run faster". GR handles everything. We wouldn't add the SR effect to the result of the GR metric.
Thanks. I thought I'd have to have some expression for ##dz^2## in order to account for the fact that the clock's z coordinate is changing in time (and not uniformly due to the accelerated motion), but I not I get yor point.
 
  • Like
Likes   Reactions: TSny

Similar threads

Replies
1
Views
2K
Replies
19
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
907
  • · Replies 2 ·
Replies
2
Views
1K
Replies
26
Views
4K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
1K