Time ordering operator

  • Thread starter kanato
  • Start date
As I understand it, the time ordering operator works as follows (for [tex]t<0[/tex]):
[tex]T c^\dagger(t) c(0) = -c(0) c^\dagger(t)[/tex] for fermions and
[tex]T c^\dagger(t) c(0) = c(0) c^\dagger(t)[/tex] for bosons.

Now suppose instead of these creation/annihilation operators, I had a more general commutation relation, ie [tex][d,d^\dagger] = S[/tex], how does the time ordering operator behave?

Edit: After rereading that, I should be more specific. I'm trying to formulate DMFT equations in a non-orthogonal basis. So the creation/annihilation operators anti-commute to give [d_a,d_b^\dagger]_+ = S_{a,b}. The Green's function is usually defined as [tex]G(\tau) = \langle T c(\tau) c^\dagger(0) \rangle[/tex] and I need to understand exactly what the time ordering operator does, but I'm not even totally sure how its really defined, because as I understand it above, it works differently for fermions and bosons.
Last edited:


Science Advisor
Insights Author
Gold Member
The time-ordering operator just orders time-dependent operators in a product according to their time arguments (from right to left in ascending order). They don't care about any commutators.

Your definition of the time-ordered Green's function is correct with this definition. The time-ordering comes into the game when solving the time-evolution equation for an explicitly time-dependent Hamiltonian. This happens, e.g., in the usual interaction picture, where the operators time-evolove according to the free Hamiltonian ##\hat{H}_0##, and the states with the interaction Hamiltonian ##\hat{H}_I##, and ##\hat{H}_I=\hat{H}_I(t)## is usually time-dependent. The time-evolution operator ##\hat{C}## for the states obeys the equation of motion
$$\mathrm{i} \hbar \dot{\hat{C}}(t)=\hat{H}_I(t) \hat{C}(t),$$
which you cannot so easily integrate as it might look, because the Hamiltonian ##\hat{H}_I(t)## may not be commuting at different times.

The key to a (formal) solution is to rewrite the equation of motion (eom) in terms of an integral equation, working in the initial condition ##\hat{C}(t_0)=\hat{1}##. Integrating the eom then leads to
$$\hat{C}(t)=\hat{1} -\mathrm{i}/\hbar \int_{t_0}^t \mathrm{d} t' \hat{H}_I(t') \hat{C}(t').$$
Now you can solve this equation iteratively, i.e., you start with the (very crude) approximation ##\hat{C}_0(t)=\hat{1}## and plug this approximation into the right-hand side of the integral eom, giving you
$$\hat{C}_1(t)=\hat{1} - \mathrm{i}/\hbar \int_{t_0}^t \mathrm{d} t_1 \hat{H}_I(t_1).$$
This solution you plug again into the right-hand side of the integral eom giving
$$\hat{C}_2(t)=\hat{1} - \mathrm{i}/\hbar \int_{t_0}^t \mathrm{d} t_1 \hat{H}_I(t_1) + (-\mathrm{i}/\hbar)^2 \int_{t_0}^t \mathrm{d} t_2 \int_{t_0}^{t_2} \mathrm{d} t_1 \hat{H}_I(t_2) \hat{H}_I(t_1).$$
Now you can rewrite the final integral by reading it as a surface integal in the ##(t_1,t_2)## plane. Instead of integrating over ##t_2## first you can as well integrate over ##t_1## first (just draw the triangular integration region!)
$$\int_{t_0}^t \mathrm{d} t_2 \int_{t_0}^{t_2} \mathrm{d} t_1 \hat{H}_I(t_2) \hat{H}_I(t_1) = \int_{t_0}^t \mathrm{d} t_1 \int_{t_1}^{t} \mathrm{d} t_2 \hat{H}_I(t_2) \hat{H}_I(t_1).$$
We always have to keep to Hamiltonian with the smaller time argument to the right. Now we rename the integration variables on the right-hand side of the equation and in another step use the time-ordering operator:
$$\int_{t_0}^t \mathrm{d} t_2 \int_{t_0}^{t_2} \mathrm{d} t_1 \hat{H}_I(t_2) \hat{H}_I(t_1) = \int_{t_0}^t \mathrm{d} t_2 \int_{t_2}^{t} \mathrm{d} t_1 \hat{H}_I(t_1) \hat{H}_I(t_2)= \int_{t_0}^t \mathrm{d} t_2 \int_{t_2}^{t} \mathrm{d} t_1 \mathcal{T} \hat{H}_I(t_2) \hat{H}_I(t_1).$$
Since we can also write a time ordering operator in front of the operator product on the left-hand side, we can just add the two equal integrals and divide by ##2##, leading to
$$\int_{t_0}^t \mathrm{d} t_2 \int_{t_0}^{t_2} \mathrm{d} t_1 \hat{H}_I(t_2) \hat{H}_I(t_1) = \frac{1}{2} \int_{t_0}^t \mathrm{d} t_2 \int_{t_0}^t \mathrm{d} t_1 \mathcal{T} \hat{H}_I(t_2) \hat{H}_I(t_1).$$
This argument you can now iterate further, and finally you get as a formal solution of the eom
$$\hat{C}(t)=\mathcal{T} \exp \left [-\frac{\mathrm{i}}{\hbar} \int_{t_0}^t \mathrm{d} t' \hat{H}_I(t') \right].$$
Here you have to expand the exponential in its power series, giving each integral in the power another name of the time-integration variable, then the time-ordering symbol makes sense. The general correction of ##N##th order thus reads
$$\frac{1}{N!} \left (-\frac{\mathrm{i}}{\hbar} \right)^N \int_{t_0}^t \mathrm{d} t_N \int_{t_0}^t \mathrm{d} t_{N-1} \cdots \int_{t_0}^t \mathrm{d} t_1 \mathcal{T} \hat{H}_I (t_N) \hat{H}_I(t_{N-1}) \cdot \hat{H}(t_1).$$
The Green's function becomes important in evaluating these integrals because of Wick's theorem for vacuum expectation values (see any QFT textbook).

Want to reply to this thread?

"Time ordering operator" You must log in or register to reply here.

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Hot Threads