Time series analysis and data transformation

  • Context: Undergrad 
  • Thread starter Thread starter fog37
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on the necessity of transforming time series data to achieve stationarity for effective modeling using ARIMA and SARIMA techniques. It highlights that while transformations can alter the original data, the use of inverse transformations allows predictions to be interpreted in the original scale. The conversation emphasizes the importance of understanding residual properties and the implications of using models like ARMA, which require stationary data, versus SARIMA, which accommodates non-stationary data with trends and seasonality. Ultimately, SARIMA is recommended for its convenience in handling preprocessing steps.

PREREQUISITES
  • Understanding of time series analysis concepts, including stationarity and seasonality.
  • Familiarity with ARIMA and SARIMA modeling techniques.
  • Knowledge of inverse transformations in data analysis.
  • Basic grasp of residual analysis and its implications in statistical modeling.
NEXT STEPS
  • Research the implementation of SARIMA models using Python's statsmodels library.
  • Learn about the differencing technique in ARIMA to achieve stationarity.
  • Explore the significance of residual analysis in time series forecasting.
  • Investigate automated tools for selecting SARIMA parameters based on statistical significance.
USEFUL FOR

Data scientists, statisticians, and analysts involved in time series forecasting, particularly those working with ARIMA and SARIMA models for predictive analytics.

fog37
Messages
1,566
Reaction score
108
TL;DR
time series analysis and transformations
Hello,
Many time-series forecasting models (AR, ARMA, ARIMA, SARIMA, etc.) require the time series data to be stationarity.

But often, due to seasonality, trend, etc. we start with an observed time-series that is not stationary. So we apply transformations to the data so it becomes stationary. Essentially, we get a new, stationary time series which we use to create the model (AR, ARMA, etc.). But the transformed data is very different from the original data...Isn't the model supposed to work with data like the original data, i.e. isn't the goal to build a model that describes and can make forecasting on data that looks like the original data, not like the transformed data?

Thanks!
 
Physics news on Phys.org
fog37 said:
TL;DR Summary: time series analysis and transformations

Isn't the model supposed to work with data like the original data, i.e. isn't the goal to build a model that describes and can make forecasting on data that looks like the original data, not like the transformed data?
As long as there is an inverse transform then you can get back to the original scale.

The usual problem with computing the statistics on the transformed data is that the residuals usually have different properties. Assumptions on the residual distribution hold on the transformed scale, and when inverse transformed they may be quite different.
 
Last edited:
  • Like
Likes   Reactions: fog37 and BvU
There are many levels and definitions of "stationary". See Stationary process. A lot of people would not consider an ARIMA or SARIMA to be stationary in the most simple sense.
 
  • Like
Likes   Reactions: fog37
Dale said:
As long as there is an inverse transform then you can get back to the original scale.

The usual problem with computing the statistics on the transformed data is that the residuals usually have different properties. Assumptions on the residual distribution hold on the transformed scale, and when inverse transformed they may be quite different.
Ok, I guess the key word is "inverse transformation". We convert the original signal into a new signal, create a model for the new signal, make predictions, and finally apply an inverse transformation to predictions which would now make sense for the original data...
It is the same things as when we convert a time-domain signal ##f(t)## into its frequency version ##F(\omega)##, solve the problem in the frequency domain, get a frequency domain solution, and convert that solution back to the time domain...
 
  • Like
Likes   Reactions: Dale
Yes, that is a good example
 
  • Like
Likes   Reactions: fog37
One realization I just had is that time-series models like ##AR, MA, ARMA, etc.## seem to just be discrete time ODEs, i.e. difference equations...But these linear models are generally used to make predictions/extrapolations of unknown values of ##y_t## without reaching a final solution, ##y=f(t)##, correct? Why not?

For example, a fitted AR(1) model is something like this: $$y_t = a y_{t-1}$$ which can be converted to the ODE model $$y_t = \frac {a} {a-1} y'$$

Why not solve for ##y_t## instead of keeping it as ##y_t = a y_{t-1}##?
 
fog37 said:
Why not solve for ##y_t## instead of keeping it as ##y_t = a y_{t-1}##?
Because the direct solution for ##y_t## includes the cumulative random terms of all the preceding time steps. That can have a huge random variance. On the other hand, if you know the value of ##y_{t-1}##, why not use it and the random variance from that is just from one time step and is relatively small.
 
  • Like
Likes   Reactions: fog37
I was thinking the following in regards to transformations, inverse transformations, ARMA, ARIMA and SARIMA.

ARMA is meant to model time-series that are weakly stationary (constant mean, variance, autocorrelation). To train an ARMA model, the training signal ##y(t)## must therefore be stationary. If it is not, we need to apply transformations to make it so and apply inverse transformations at the very end.

With ARIMA, we avoid manually doing the stationarizing step since the ##I(d)## part of ARIMA automatically make our input signal with trend and seasonality stationary, if it is not, by taking the difference transform...
But I guess differencing does not take remove the seasonal component from ##y(t)##? Does that means that we would need to remove seasonality manually before using ARIMA?

The best solution seems to then use SARIMA which does not care if the training signal has trend and/or seasonality because it takes care of it internally: we don't need to manually apply any transformations to the raw time series ##y(t)## and inverse transformations to the prediction outputs of the SARIMA model....

Any mistake in my understanding? I would definitely choose SARIMA, more convenient, since we can skip all those preprocessing transformations to make ##y(t)## stationary and inverse transformations after the forecasting...
 
fog37 said:
Any mistake in my understanding? I would definitely choose SARIMA, more convenient, since we can skip all those preprocessing transformations to make ##y(t)## stationary and inverse transformations after the forecasting...
That is a natural thought. But you should avoid anything that would be like "throwing everything at the wall to see what sticks". A time series analysis tool-set might allow you to automate finding a SARIMA solution that only includes terms that are statistically significant. But you should have some subject-matter reason to include the trend and seasonal terms. A good tool-set should allow you to prevent the inclusion of terms that do not make sense .
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K