MHB Topology Munkres Chapter 1 exercise 2 e- Set theory

AI Thread Summary
The discussion revolves around exercise 2e from Munkres' Topology, specifically the statement $A-(A-B)=B$. A user provides a counterexample with sets A and B, showing that $A-(A-B)$ results in a subset of B, but not equal to B. The conclusion drawn is that while the equality fails, the inclusion $A-(A-B) \subset B$ holds true. The participants engage in proving this inclusion through logical deductions about set membership. The exercise highlights the importance of understanding set operations and their implications in topology.
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everyone
I am having some difficulties on exercise 2e from Topology 2nd ed by J. Munkres . Here are the directions:
determine which of the following states are true for all sets [FONT=MathJax_Math-italic]A, [FONT=MathJax_Math-italic]B, [FONT=MathJax_Math-italic]C, and [FONT=MathJax_Math-italic]D. If a double implication fails, determine whether one or the other one of the possible implication holds. If an equality fails, determine whether the statement becomes true if the "equal" symbol is replaced by one or the other of the inclusion symbols [FONT=MathJax_Main]⊂or [FONT=MathJax_Main]⊃.e.) $A-(A-B)=B$

My work:
Let A={1,2,3,4,5,7} and B={1,3,5,9}
A-B={2,4,7}
A-(A-B)=A-{2,4,7}={1,3,5,9}= B?

Thanks
Cbarker1
 
Physics news on Phys.org
Cbarker1 said:
Dear Everyone
I am having some difficulties on exercise 2e from Topology 2nd ed by J. Munkres . Here are the directions:
determine which of the following states are true for all sets [FONT=MathJax_Math-italic]A, [FONT=MathJax_Math-italic]B, [FONT=MathJax_Math-italic]C, and [FONT=MathJax_Math-italic]D. If a double implication fails, determine whether one or the other one of the possible implication holds. If an equality fails, determine whether the statement becomes true if the "equal" symbol is replaced by one or the other of the inclusion symbols [FONT=MathJax_Main]⊂or [FONT=MathJax_Main]⊃.e.) $A-(A-B)=B$

My work:
Let A={1,2,3,4,5,7} and B={1,3,5,9}
A-B={2,4,7}
A-(A-B)=A-{2,4,7}={1,3,5,9}= B?

Thanks
Cbarker1
If A={1,2,3,4,5,7} and B={1,3,5,9} then
A-B={2,4,7}
A-(A-B)=A-{2,4,7}={1,2,3,4,5,7}-{2,4,7}={1,3,5}.

Notice that A-(A-B) is contained in B, but it is not the whole of B because it does not include 9.

That shows that the statement $A-(A-B)=B$ is not true. However, it is true that $A-(A-B)\subset B$. Can you prove that?
 
Opalg said:
If A={1,2,3,4,5,7} and B={1,3,5,9} then
A-B={2,4,7}
A-(A-B)=A-{2,4,7}={1,2,3,4,5,7}-{2,4,7}={1,3,5}.

Notice that A-(A-B) is contained in B, but it is not the whole of B because it does not include 9.

That shows that the statement $A-(A-B)=B$ is not true. However, it is true that $A-(A-B)\subset B$. Can you prove that?

Proof: Suppose x is an arbitrary element in $A-(A-B)$. Then $x\in A$ and $x \notin(A-B)$. So $x\in A$ and $x\notin A$ and $x\in B$. Thus $x\in B$ because an element $x$ can't be both in A and not in A. QED
 
Cbarker1 said:
Proof: Suppose x is an arbitrary element in $A-(A-B)$. Then $x\in A$ and $x \notin(A-B)$. So $x\in A$ and $x\notin A$ and $x\in B$.
The fact that $x\in A-B$ means that $x\in A$ and $x\notin B$. The negation of that, i.e., $x\notin A-B$, means that $x\notin A$ or $x\in B$. Thus, writing $\land$ for "and" and $\lor$ for "or", $x\in A-(A-B)$ means
$$
\begin{align}
x\in A\land (x\notin A\lor x\in B)&\iff (x\in A\land x\notin A)\lor (x\in A\land x\in B)\\
&\iff x\in A\land x\in B\\
&\implies x\in B
\end{align}
$$
In particular, we deduced that $A-(A-B)=A\cap B$.
 
Back
Top