Totally elastic and momentum collision equation help Thanks

Click For Summary
SUMMARY

This discussion focuses on solving a perfectly inelastic collision problem involving a 12kg wad of clay and a 100g wooden block. The key formula used is 1/2(m1+m2)V2^2 = friction(m1+m2)gL, which equates the kinetic energy of the clay-block system after the collision to the work done by friction. The participants clarify that the first step is to calculate the final velocity (Vf) of the system using the conservation of momentum equation Vf = (m1V1i + m2V2i) / (m1 + m2), where V2 is the initial speed of the block, which is zero. Understanding these equations is crucial for determining the speed of the clay immediately before impact.

PREREQUISITES
  • Understanding of perfectly inelastic collisions
  • Familiarity with conservation of momentum
  • Knowledge of kinetic energy and work-energy principles
  • Basic algebra for manipulating equations
NEXT STEPS
  • Study the derivation of the kinetic energy and work-energy equations
  • Learn about conservation of momentum in inelastic collisions
  • Explore the relationship between friction and motion in physics
  • Practice solving similar collision problems using different mass and velocity values
USEFUL FOR

Students studying physics, particularly those focusing on mechanics and collision theory, as well as educators seeking to clarify concepts related to inelastic collisions and energy conservation.

nukeman
Messages
651
Reaction score
0

Homework Statement



A 12kg wad of clay is hurled horizontally at a 100g wooden block initially at rest on a horizontal surface. The clay sticks to the block. After impact, the block slides 7.50m before coming to rest. If the coefficient of friction between the bloack and the surface is .650, what is the SPEED of the clay immediately before impact?

Homework Equations



This is a perfectly inelastic collision correct?

My book tells me in the answer section to use the following formula, but I am not sure where it came from or why to use this. Am I to use this for equations related to inelastic collisions and friction involved?

1/2(m1+m2)V2^2 = friction(m1+m2)gL

How did it come up with that? I guess I am just having trouble figuring out how I was suppose to come up with that formula.

Any clarification?



The Attempt at a Solution

 
Physics news on Phys.org
nukeman said:
This is a perfectly inelastic collision correct?
Yes.

My book tells me in the answer section to use the following formula, but I am not sure where it came from or why to use this. Am I to use this for equations related to inelastic collisions and friction involved?

1/2(m1+m2)V2^2 = friction(m1+m2)gL

How did it come up with that? I guess I am just having trouble figuring out how I was suppose to come up with that formula.
It's telling you that the kinetic energy the system had after the collision must equal the work done by friction. Note that V2 is the speed of the 'clay+block' after the collision. You'll use that to figure out the speed of the clay before the collision.
 
nukeman said:
1/2(m1+m2)V2^2 = friction(m1+m2)gL

Do you think that above equation is to be used before impact or after impact?

Now i notice that another poster beat me.
 
Ok great.

When looking at this problem... What is the first and second things I should be trying to figure out. Mainly, when looking at this problem specifically, what would I be looking to do first?

I want to systematically break this equation down from start!
 
grzz said:
Do you think that above equation is to be used before impact or after impact?

Now i notice that another poster beat me.

I really am not sure... ?
 
nukeman said:
When looking at this problem... What is the first and second things I should be trying to figure out. Mainly, when looking at this problem specifically, what would I be looking to do first?

I want to systematically break this equation down from start!
Break the problem into two stages:
(1) The collision itself. What's conserved?
(2) The movement against friction after the collision.

The equation you have deals with part #2.

What equation can you come up with to deal with #1?
 
I thought for step one, I would use:

Vf = m1V1i + m2V2i / (m1 + m2)

?
 
nukeman said:
I thought for step one, I would use:

Vf = m1V1i + m2V2i / (m1 + m2)

?
Good. (Careful with parentheses!)

What does Vf correspond to?

What about V1i and V2i?
 
Doc Al said:
Good. (Careful with parentheses!)

What does Vf correspond to?

What about V1i and V2i?

Vf would be velocity of the system?

v1i would be for the clay and v2i would be wood ?
 
  • #10
nukeman said:
Vf would be velocity of the system?
Yes, immediately after the collision.

v1i would be for the clay and v2i would be wood ?
Right.
 
  • #11
Ok, so first thing I do when looking at this is figure out the Vf of the system after the collision.

With the formula I supplied for the first step Vf = m1V1i + m2V2i / (m1 + m2) , how do I go from there, to here: 1/2(m1+m2)V2^2 = friction(m1+m2)gL
 
  • #12
Doc? Can you explain the above reply to me if you can, or anyone else? :)
 
  • #13
nukeman said:
Ok, so first thing I do when looking at this is figure out the Vf of the system after the collision.
Right. You'll do that by solving the second part first, since you have all the needed data. (It's often the case that its best to work a problem 'backwards'.)

With the formula I supplied for the first step Vf = m1V1i + m2V2i / (m1 + m2) , how do I go from there, to here: 1/2(m1+m2)V2^2 = friction(m1+m2)gL
You'll solve the second step first.

How will you relate the two steps? Hint: How does Vf in the first formula relate to V2 in the second? (Generally it's a good idea to use the same symbols for the same quantities. Otherwise things get confusing.)

In your first formula, Vf = (m1V1i + m2V2i) / (m1 + m2), what is V2?
 
  • #14
Oh ok Doc, I am starting to understand it a little better. Just having trouble coming to a conclusion on what exact formula to use. Like what stpes I take to get the right formula...

You ask what is V2 ? Well, that's the Velocity of the wood, which is zero, correct? What significance is that may I ask?

Again, MUCH thanks for the help!

EDIT: I guess what I am missing is how I would come to the formula to get the speed of the system, as detailed here: 1/2(m1+m2)V2^2 = friction(m1+m2)gL

I have never seen that before!
 
Last edited:
  • #15
nukeman said:
You ask what is V2 ? Well, that's the Velocity of the wood, which is zero, correct? What significance is that may I ask?
Yes, in your conservation of momentum equation (which describes the collision), V2 stands for the initial speed of the block, which is zero. You'll need that equation to solve for the initial speed of the bullet. (You'll use this equation last.)

EDIT: I guess what I am missing is how I would come to the formula to get the speed of the system, as detailed here: 1/2(m1+m2)V2^2 = friction(m1+m2)gL
That's just an energy equation stating that the change in KE of the system after the collision is equal to the work done by friction. What does V2 stand for here?
 

Similar threads

  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K