I Transformation of Functions: How Do Domain and Range Change?

DumpmeAdrenaline
Messages
80
Reaction score
2
I want to understand how the domain and range change upon applying transformations like (left/right shifts, up/down shifts, and vertical/horizontal stretching/compression) on functions.
Let f(x)=2-x if 0 ≤x ≤2 and 0 otherwise.
I want to describe the following functions 1) f(-x) 2) -f(x) 3) f(x+3) 4) f(x)+3 5) f(2x) 6) 2f(x) 7) f(2x+3)
The rule generates an output by multiplying the input by -1 and adding the result to 2.
1) f operates on the closed interval [0,2] as its domain. With f(-x) the domain then changes to [-2,0] so that upon multiplying each real number in this interval by -1 we obtain the same domain [0,2] and the same image [0,2] as f(x). f(-x)=2-(-x)=2+x.
2) -f(x) change the sign of the output keeping the input.
3) f(x+3) Each input in the closed interval [0,2] moves by 3 units, such that the domain changes to 3 ≤x+3 ≤5. However, under this domain the function generates an output of 0. As a result the domain of f(x+3) becomes [0,-1] so that upon adding 3 units to we wind up with the same domain and range as f(x).
4) Move every point up by 3 units
5) The domain of f(2x) shrinks to 0<x<1 so that when multiply each real number we obtain the same domain and range as f(x). f(2x)=2-2x
6) Multiply each output by 2 keeping the input.
7) Composed transformation of shrinking by 1/2 followed by a shift 3 units to the left resulting in a domain of [-3,-1].
In all of the above are we changing the rule f?
 
Mathematics news on Phys.org
DumpmeAdrenaline said:
I want to describe
You also want to learn how to post math using a little ##\ \LaTeX\ ##.
See tutorial. It's really easy, and it's fun. Enclose in ## for in-line math and in $$ for displayed math. Example:
Code:
$$1) \quad  f(-x) \\ 2) \quad -f(x) \\ 3) \quad f(x+3) \\
4) \quad f(x)+3 \\5) \quad f(2x) \\6) \quad 2f(x) \\7) \quad f(2x+3)$$
yields
$$1) \quad f(-x) \\ 2) \quad -f(x) \\ 3) \quad f(x+3) \\4) \quad f(x)+3 \\5) \quad f(2x) \\6) \quad 2f(x) \\7) \quad f(2x+3)$$

[edit] this looks like ... because MathJax doesn't acknowledge the line feeds (\\\) and I don't understand what is screwing things up. :cry:

A better way to do this is with \begin{align} and let ##\TeX## do the numbering:
Code:
$$\begin{align}
 & f(-x)  \\  -&f(x) \\ &f(x+3) \\ &f(x)+3 \\&f(2x) \\2&f(x) \\ &f(2x+3)
\end{align}$$
$$\begin{align}
& f(-x) \\ -&f(x) \\ &f(x+3) \\ &f(x)+3 \\&f(2x) \\2&f(x) \\ &f(2x+3)
\end{align}$$

##\ ##
 
Last edited:
DumpmeAdrenaline said:
3) f(x+3) Each input in the closed interval [0,2] moves by 3 units, such that the domain changes to 3 ≤x+3 ≤5.
No. Make a sketch to see. You doubled up: domain is ##0 \le x+3 \le 2## .

DumpmeAdrenaline said:
In all of the above are we changing the rule f?
No, we are not.

##\ ##
 
BvU said:
No. Make a sketch to see. You doubled up: domain is
I reached the same answer but for the wrong reason.I thought that the x in f(x) is the same as x+3. Hence, why I added 3 to both sides of the inequality. So, we regard x+3 and x as just labels to the input?
 
From post #1:
DumpmeAdrenaline said:
3) f(x+3) Each input in the closed interval [0,2] moves by 3 units, such that the domain changes to 3 ≤x+3 ≤5. However, under this domain the function generates an output of 0. As a result the domain of f(x+3) becomes [0,-1] so that upon adding 3 units to we wind up with the same domain and range as f(x).

BvU said:
No. Make a sketch to see. You doubled up: domain is ##0 \le x+3 \le 2## .
And further, ##0 \le x+3 \le 2 \Rightarrow -3 \le x \le -1##, so the domain for y = f(x + 3), is the translation left by 3 units of the domain for y = f(x).
DumpmeAdrenaline said:
I reached the same answer but for the wrong reason.I thought that the x in f(x) is the same as x+3.
You're dealing with two different functions, each of which is a translation by 3 units of the other.

Here's a sketch of y = f(x) (in blue) and y = f(x + 3) (in red).
graph.png
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top