MHB Transitive Sets: Prove, Show With $n$ Elements

  • Thread starter Thread starter Also sprach Zarathustra
  • Start date Start date
  • Tags Tags
    Sets
Also sprach Zarathustra
Messages
43
Reaction score
0
Hello, I need a help with the following:

1. Let $A$ be a transitive set, prove that $A\cup \{A \}$ is also transitive.
2. Show that for every natural $n$ there is a transitive set with $n$ elements.
 
Physics news on Phys.org
Also sprach Zarathustra said:
Hello, I need a help with the following:

1. Let $A$ be a transitive set, prove that $A\cup \{A \}$ is also transitive.
2. Show that for every natural $n$ there is a transitive set with $n$ elements.
For 2., use induction. Let $A_1 = \{\emptyset\}$. For $n\geqslant1$, let $A_{n+1} = A_n\cup \{A_n\}$ and use 1.
 
A transitive set is one in which all elements are subsets, now for 1. you have that the only new member that you have introduced is $A$ and it is a subset so the set is transtitve.

Imagine the tansitive set to be $A=\{1,2,3,4,5\}$ where these are defined in the usual way (in terms of the empty set).

Then the new set would be $B=\{1,2,3,4,5,A\}$ now then we can see that $A\in B$ but also that $\{1,2,3,4,5\}\subset B$ and so $A$ is a subset of B and so the set is transitive
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...

Similar threads

Back
Top