I Translating the harmonic oscillator

Click For Summary
The discussion focuses on expressing the wavefunction of a 1D harmonic oscillator, ##\psi_n(x+a)##, in terms of the known wavefunctions ##\psi_n(x)##. It explores the use of the Fourier transform and the inner product method to derive a linear combination of the wavefunctions. A key point is the correction of a sign error in the exponential operator expression related to the momentum operator. The participants emphasize the importance of orthogonality in determining the coefficients of the linear combination. Overall, the conversation highlights the mathematical intricacies involved in translating the harmonic oscillator's wavefunctions.
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
Let's say I know the position space wavefunctions of the 1d harmonic oscillator ##\psi_n(x)## corresponding to the state ##| n \rangle## are known. I want to write ##\psi_m(x + a)##, for fixed ##m = 1,2,...##, in terms of all of the ##\psi_n(x)##. I know \begin{align*}
\psi_n(x+a) = \langle x | e^{-iaP}| n \rangle &= \int \langle x | e^{-iaP} | p \rangle \langle p | n \rangle dp \\
&= \int e^{-iap} \langle x | p \rangle \bar{\psi}_n(p) dp \\
&= \frac{1}{\sqrt{2\pi}} \int e^{i(x-a)p} \bar{\psi}_n(p) dp
\end{align*}To get it in terms of ##\psi_n(x)## we could Fourier transform, i.e. (?)
\begin{align*}
\psi_n(x+a) = \frac{1}{2\pi} \iint e^{ip(x-x')} e^{-iap} \psi_n(x') dx' dp
\end{align*}It doesn't really look helpful?
 
Physics news on Phys.org
ergospherical said:
Let's say I know the position space wavefunctions of the 1d harmonic oscillator ##\psi_n(x)## corresponding to the state ##| n \rangle## are known. I want to write ##\psi_m(x + a)##, for fixed ##m = 1,2,...##, in terms of all of the ##\psi_n(x)##. I know \begin{align*}
\psi_n(x+a) = \langle x | e^{-iaP}| n \rangle &= \int \langle x | e^{-iaP} | p \rangle \langle p | n \rangle dp \\
&= \int e^{-iap} \langle x | p \rangle \bar{\psi}_n(p) dp \\
&= \frac{1}{\sqrt{2\pi}} \int e^{i(x-a)p} \bar{\psi}_n(p) dp
\end{align*}[/tex]
This appears to be related to the fourier shift theorem (see row 102 of the table here).

If you want \psi_n(x + a) as a linear combination of the \psi_n, then look for one. Set <br /> \psi_n(x + a) = \sum_{m} M_{nm} \psi_m(x) and take an appropriate inner product with \psi_k(x) (ideally one with repect to which the \psi_k are orthogonal) to determine the M_{nm}, <br /> \int w(x)\psi_n(x + a)\bar{\psi}_k(x)\,dx = \sum_m M_{nm} \int w(x)\psi_m(x)\bar{\psi}_k(x)\,dx.
 
  • Like
Likes ergospherical
As you can easily see yourself, using your Fourier-decomposition method, you simply got the sign wrong in the very first exponential-operator expression, i.e., you have
$$\langle x|\exp(+\mathrm{i} \hat{p} a) \psi_n \rangle = \int_{\mathbb{R}} \mathrm{d} p \langle x | p \rangle \langle p |\exp(\mathrm{i} \hat{p} a) \psi_n \rangle = \int_{\mathbb{R}} \mathrm{d} p \frac{1}{\sqrt{2 \pi}} \exp(\mathrm{i} p x) \exp(\mathrm{i} p a) \langle p |\psi_n \rangle = \int_{\mathbb{R}} \mathrm{d} p \frac{1}{\sqrt{2 \pi}} \exp[\mathrm{i} p(x+a)] \langle p|\psi_n \rangle= \int_{\mathbb{R}} \mathrm{d} p \langle x+a|p \rangle \langle p|\psi_n \rangle= \psi_n(x+a).$$
 
  • Like
Likes Demystifier
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...