Translation-Invariant Operators on Lebesgue Spaces

  • Context: Undergrad 
  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    Operators
Click For Summary
SUMMARY

This discussion establishes that a nonzero, translation-invariant bounded linear operator \( T : L^p(\mathbb{R}^d) \to L^q(\mathbb{R}^d) \) necessitates that \( q \ge p \) for \( 1 \le p, q < \infty \). The concept of translation invariance is clarified, indicating that it requires \( T \circ \tau_y = \tau_y \circ T \) for all \( y \in \mathbb{R}^d \), where \( \tau_y f(x) := f(x + y) \). The discussion also highlights the importance of understanding the implications of translation invariance in the context of bounded linear operators on Lebesgue spaces.

PREREQUISITES
  • Understanding of Lebesgue spaces, specifically \( L^p \) and \( L^q \) spaces.
  • Familiarity with bounded linear operators in functional analysis.
  • Knowledge of translation operators and their properties.
  • Basic concepts of mathematical proofs and operator theory.
NEXT STEPS
  • Study the properties of translation-invariant operators in functional analysis.
  • Explore the implications of the Riesz Representation Theorem in the context of \( L^p \) spaces.
  • Investigate the relationship between bounded linear operators and their continuity in Lebesgue spaces.
  • Learn about the implications of translation invariance in the context of Fourier transforms.
USEFUL FOR

Mathematicians, particularly those specializing in functional analysis, graduate students studying operator theory, and researchers exploring properties of Lebesgue spaces and translation-invariant operators.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Show that if there exists a nonzero, translation-invariant bounded linear operator ##T : L^p(\mathbb{R}^d) \to L^q(\mathbb{R}^d)## where ##1 \le p, q < \infty##, then necessarily ##q \ge p##.
 
  • Like
Likes   Reactions: Greg Bernhardt
Physics news on Phys.org
Does translation invariant mean that ##T(f(x+c))=T(f(x))## for any constant c?
 
  • Like
Likes   Reactions: Euge
Office_Shredder said:
Does translation invariant mean that ##T(f(x+c))=T(f(x))## for any constant c?
If ##y\in \mathbb{R}^d## and ##(\tau_y f)(x) := f(x + y)## for all ##x\in \mathbb{R}^d##, we require ##T\circ \tau_y = \tau_y\circ T## for all ##y\in \mathbb{R}^d##.
 
Euge said:
If ##y\in \mathbb{R}^d## and ##(\tau_y f)(x) := f(x + y)## for all ##x\in \mathbb{R}^d##, we require ##T\circ \tau_y = \tau_y\circ T## for all ##y\in \mathbb{R}^d##.

Thanks. I tried to Google translation invariant operator but the first hit was a proof of this result, so I stopped looking.
 
  • Like
Likes   Reactions: Euge
If ##f : \mathbb{R}^d \to \mathbb{R}## is a smooth and compactly supported, the supports of ##f## and ##\tau_y f## are disjoint for all sufficiently large ##|y|##. Hence ##\|f + \tau_yf\|_p = (\|f\|_p^p + \|\tau_yf\|_p^p)^{1/p} = 2^{1/p}\|f\|_p## for ##|y| \gg 1##. By translational invariance of ##T##, a similar argument shows ##\|T(f + \tau_yf)\|_q = 2^{1/q} \|Tf\|_q## for ##|y| \gg 1##. Boundedness of ##T## forces ##2^{1/q} \|Tf\|_q \le \|T\| 2^{1/p} \|f\|_p##. Replacing ##f## with ##f + \tau_yf## and repeating the analysis produces the inequality ##2^{2/q} \|Tf\|_q \le \|T\| 2^{2/p} \|f\|_p##. Repeating the process, we find ##2^{N/q} \|Tf\|_q \le \|T\| 2^{N/p} \|f\|_p## for all positive integers ##N##. By density of smooth compactly supported functions in ##L^p## the same inequalities hold true for all ##f\in L^p##.

Since ##T## is nonzero, there is a nonzero ##f\in L^p## such that ##\|Tf\|_q > 0##. The inequality $$\|T\| \ge 2^{N(1/p - 1/q)} \frac{\|Tf\|_q}{\|f\|_p}\quad (N = 1,2,3,\ldots)$$ forces ##1/p - 1/q \le 0## (otherwise ##\|T\| = \infty##). In other words, ##q \ge p##.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K