A Linear Operator with Trace Condition

  • #1

Euge

Gold Member
MHB
POTW Director
2,008
1,369
Let ##V## be a finite dimensional vector space over a field ##F##. If ##L## is a linear operator on ##V## such that the trace of ##L\circ T## is zero for all linear operators ##T## on ##V##, show that ##L = 0##.
 

Answers and Replies

  • #2
I hope I didn't overlook something. It is quite late here.

Set ##L=\sum_\mu \lambda_\mu \otimes X_\mu ## and ##T=\sum_\nu \tau_\nu \otimes X_\nu\,.## Then
\begin{align*}
(L\circ T)(v)&=\sum_\mu \lambda_\mu\left(\sum_\nu \tau_\nu (v) X_\nu \right)X_\mu =\sum_\mu \sum_\nu \tau_\nu(v) \lambda_\mu(X_\nu) X_\mu\\
&=\left(\sum_\mu \left(\sum_\nu \lambda_\mu(X_\nu)\tau_\nu\right)\otimes X_\mu\right)(v)
\end{align*}
Therefore
$$
0=\operatorname{trace}\left(\sum_\mu \left(\sum_\nu \lambda_\mu(X_\nu)\tau_\nu\right)\otimes X_\mu \right)= \sum_{\mu,\nu} \lambda_\mu(X_\nu) \operatorname{trace}\left(\tau_\nu \otimes X_\mu\right)
$$
Now we can choose ##T## as ##T(v)=\alpha v+\beta v_\nu## with scalasr ##\alpha,\beta## such that
$$
\operatorname{trace}\left(\tau_\nu \otimes X_\mu\right)=1
$$
consecutively, and making all ##\lambda_\mu(X_\nu)=0## and thus ##L\equiv 0.## ##\alpha## and ##\beta## are chosen in a way that norms the trace and avoids conflicts with the characteristic of ##F.##
 

Suggested for: A Linear Operator with Trace Condition

Replies
10
Views
524
Replies
3
Views
159
Replies
1
Views
154
Replies
7
Views
548
Replies
14
Views
539
Replies
6
Views
333
Replies
2
Views
483
Replies
1
Views
438
Replies
2
Views
317
Replies
1
Views
9K
Back
Top