Transmission cable problem involving power loss

  • Thread starter Thread starter hendrix7
  • Start date Start date
  • Tags Tags
    Power loss
AI Thread Summary
The discussion centers on calculating power loss in transmission cables using the formulas P = I²R and V = IR. A power loss of 187.5 kW is confirmed with an input current of 250 A and resistance of 3 ohms. The voltage drop of 750 volts represents the two-way voltage drop from the power source to the destination, indicating resistive losses along the cable. It is clarified that both methods of calculating power loss yield the same results, reinforcing the relationship between current, resistance, and voltage in transmission systems. Overall, the conversation emphasizes understanding the implications of voltage drop and power loss in electrical transmission.
hendrix7
Messages
36
Reaction score
8
Homework Statement
A transmission cable transmits electricity at 250A and 400kV and a resistance of 3 ohms. What is the power loss?
Relevant Equations
P = I^2R
V = IR
Using P = I2R
2502 x 3 = 187.5kW
Now, I'm pretty sure that this is correct but my question is how does V = IR fit in with this? So, I = 250 and R = 3 so V must be 750, but what does this 750 volts represent? A voltage drop between two points on the transmission cable? If so, where are the two points on the transmission cable that correspond to this potential difference? Am I missing something here? This is pretty new to me so I would much appreciate it if someone could put me straight here or clarify for me.
 
Physics news on Phys.org
The input voltage of 400kV is reduced slightly at the far end by the resistive losses. The 750V drop is for the 2-way wire voltage drop from source to destination. You should get the same power loss if you do either calculation, using ##I^2R## loss or ##\frac{V^2}{R}## loss.
 
berkeman said:
The input voltage of 400kV is reduced slightly at the far end by the resistive losses. The 750V drop is for the 2-way wire voltage drop from source to destination. You should get the same power loss if you do either calculation, using ##I^2R## loss or ##\frac{V^2}{R}## loss.
Thank you, berkeman, that seems clear to me now. I really appreciate that.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top