MHB Triangle Inequality: $a^4-1, a^4+a^3+2a^2+a+1, 2a^3+a^2+2a+1$

Click For Summary
For all values of \( a > 1 \), the sides \( a^4 - 1 \), \( a^4 + a^3 + 2a^2 + a + 1 \), and \( 2a^3 + a^2 + 2a + 1 \) can form a triangle, satisfying the triangle inequality. The discussion highlights the elegance of the solution provided by Kaliprasad and appreciates the challenge posed by Anemone. Participants express enjoyment in solving and discussing the problem, emphasizing the positive community interaction. The problem serves as a good example of applying mathematical principles to verify triangle formation. Overall, the thread showcases a collaborative effort in exploring mathematical concepts.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that for all $a>1$, there is a triangle with sides $a^4-1$, $a^4+a^3+2a^2+a+1$, and $2a^3+a^2+2a+1$.
 
Mathematics news on Phys.org
anemone said:
Show that for all $a>1$, there is a triangle with sides $a^4-1$, $a^4+a^3+2a^2+a+1$, and $2a^3+a^2+2a+1$.

Let the Lengths of sides of triangle be
$x = a^4 – 1$
$y = a^4 + a^3 + 2a^2 + a +1$
$z= 2a^3 + a^2 + 2a + 1$

clearly x < y
now we need to see if y < z or y = z or y > z
$y – z = a^4 – a^3 + a^2 – a = a^3(a-1) +a (a-1) >0$
so y – z >0
so y is the longer side,
now if we prove that x + z > y then we are through
$x + z – y = a^3 – a^2 + a – 1 = (a^2+1)(a-1) > 0$

hence proved
 
Last edited:
Great problem, Anemone! :D

And a very elegant solution, Kaliprasad! :D
 
DreamWeaver said:
Great problem, Anemone! :D

It feels quite nice to receive such a compliment from time to time at MHB for my posting of the challenge problem(s)!:p(Sun)
 
anemone said:
Show that for all $a>1$, there is a triangle with sides $a^4-1$, let :$a^4+a^3+2a^2+a+1$, and $2a^3+a^2+2a+1$.
let:
$x=a^4-1=(a^2+1)(a^2-1)$
$y=a^4+a^3+2a^2+a+1=(a^2+a+1)(a^2+1)$
and
$z=2a^3+a^2+2a+1=(a^2+1)(2a+1)$
if $x,y,z $ can form a triangle ,then :
$xx=a^2-1$
$yy=a^2+a+1$
$zz=2a+1$
can also form a new but smaller triangle (by shrinking $a^2+1$ fold)
again $yy$ is the longest
now we must prove $xx+zz>yy$ if $a>1$
but $xx+zz-yy=a^2-1+2a+1-a^2-a-1=a-1>0(\,\, if \,\, a>1)$
and the proof is done
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 59 ·
2
Replies
59
Views
36K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K