MHB Tricky Trigonometry: Evaluating Cosine Cubes Without a Calculator

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2017
AI Thread Summary
The discussion revolves around evaluating the expression $\cos^3 \left(\dfrac{2\pi}{7}\right)+\cos^3 \left(\dfrac{4\pi}{7}\right)+\cos^3 \left(\dfrac{8\pi}{7}\right)$ without a calculator. Participants are encouraged to refer to the Problem of the Week guidelines for submission procedures. Several members successfully provided correct solutions, including castor28, greg1313, lfdahl, and kaliprasad. The thread highlights the collaborative nature of problem-solving in trigonometry. Engaging with such mathematical challenges can enhance understanding and skills in the subject.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Without using a calculator, evaluate $\cos^3 \left(\dfrac{2\pi}{7}\right)+\cos^3 \left(\dfrac{4\pi}{7}\right)+\cos^3 \left(\dfrac{8\pi}{7}\right)$.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solution: (Smile)

1. castor28
2. greg1313
3. lfdahl
4. kaliprasad

Solution from kaliprasad:
We have $4\cos^3 x = \cos\, x + 3 \cos 3x$ and by using the formula $\cos(x) =\cos(2\pi-x) = \cos(4\pi-x)$, we get

$4(\cos^3\dfrac{2\pi}{7} + \cos^3\dfrac{4\pi}{7} + \cos^3\dfrac{8\pi}{7})$
=$\cos\dfrac{2\pi}{7} +3\cos\dfrac{6\pi}{7} + \cos\dfrac{4\pi}{7} +3\cos\dfrac{12\pi}{7} + \cos\dfrac{8\pi}{7} +3\cos\dfrac{24\pi}{7}$
$$=(\cos\frac{2\pi}{7} +\cos\frac{4\pi}{7} + \cos\frac{8\pi}{7}) +3(\cos\frac{6\pi}{7} + \cos\frac{12\pi}{7} +\cos\frac{24\pi}{7})$$
$$=(\cos\frac{2\pi}{7} +\cos\frac{4\pi}{7} + \cos(2\pi-\frac{8\pi}{7}) +3(\cos\frac{6\pi}{7} + \cos(2\pi-\frac{12\pi}{7}) +3\cos(4\pi-\frac{24\pi}{7})$$
$$=(\cos\frac{2\pi}{7} +\cos\frac{4\pi}{7} + \cos\frac{6\pi}{7}) +3(\cos\frac{6\pi}{7} + \cos\frac{2\pi}{7} +3\cos\frac{4\pi}{7})$$
$$=4(\cos\frac{2\pi}{7} +\cos\frac{4\pi}{7} + \cos\frac{6\pi}{7})$$
$$

\therefore \cos^3\frac{2\pi}{7} + \cos^3\frac{4\pi}{7} + \cos^3\frac{8\pi}{7}=\cos\frac{2\pi}{7} +\cos\frac{4\pi}{7} + \cos\frac{6\pi}{7}$$

If we let

$$x = \cos\frac{2\pi}{7} +\cos\frac{4\pi}{7} + \cos\frac{6\pi}{7}$$

Multiply through by $2\sin \dfrac{\pi}{7}$, we get

$$\begin{align*}2x\sin \frac{\pi}{7} &=2\cos\frac{2\pi}{7}\sin \frac{\pi}{7} + 2\cos\frac{4\pi}{7}\sin \frac{\pi}{7} + 2\cos\frac{6\pi}{7}\sin \frac{\pi}{7}\\&== sin \frac{3\pi}{7} - sin \frac{\pi}{7} + sin \frac{5\pi}{7} - sin \frac{3\pi}{7} + sin \frac{7\pi}{7} - sin \frac{5\pi}{7}\\&= sin \pi - sin \frac{\pi}{7}\\&=-\sin \frac{\pi}{7}\end{align*}$$$\therefore x = -\dfrac{1}{2}$

or

$$\cos^3\frac{2\pi}{7} + \cos^3\frac{4\pi}{7} + \cos^3\frac{8\pi}{7} = -\frac{1}{2}$$
 
Back
Top