Tricky Trigonometry: Evaluating Cosine Cubes Without a Calculator

  • Context: High School 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2017
Click For Summary
SUMMARY

The problem of the week involved evaluating the expression $\cos^3 \left(\dfrac{2\pi}{7}\right)+\cos^3 \left(\dfrac{4\pi}{7}\right)+\cos^3 \left(\dfrac{8\pi}{7}\right)$ without a calculator. Members castor28, greg1313, lfdahl, and kaliprasad successfully provided correct solutions. The discussion emphasized the use of trigonometric identities and properties of cosine functions to simplify the evaluation process. Kaliprasad's solution highlighted the importance of recognizing patterns in trigonometric values.

PREREQUISITES
  • Understanding of trigonometric identities
  • Familiarity with the properties of cosine functions
  • Knowledge of polynomial equations and their roots
  • Ability to manipulate complex numbers in trigonometric contexts
NEXT STEPS
  • Study the derivation of trigonometric identities
  • Explore the properties of roots of unity in relation to trigonometric functions
  • Learn about polynomial equations involving trigonometric expressions
  • Investigate advanced techniques for evaluating trigonometric sums
USEFUL FOR

Mathematics students, educators, and enthusiasts interested in advanced trigonometry and problem-solving techniques will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Without using a calculator, evaluate $\cos^3 \left(\dfrac{2\pi}{7}\right)+\cos^3 \left(\dfrac{4\pi}{7}\right)+\cos^3 \left(\dfrac{8\pi}{7}\right)$.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solution: (Smile)

1. castor28
2. greg1313
3. lfdahl
4. kaliprasad

Solution from kaliprasad:
We have $4\cos^3 x = \cos\, x + 3 \cos 3x$ and by using the formula $\cos(x) =\cos(2\pi-x) = \cos(4\pi-x)$, we get

$4(\cos^3\dfrac{2\pi}{7} + \cos^3\dfrac{4\pi}{7} + \cos^3\dfrac{8\pi}{7})$
=$\cos\dfrac{2\pi}{7} +3\cos\dfrac{6\pi}{7} + \cos\dfrac{4\pi}{7} +3\cos\dfrac{12\pi}{7} + \cos\dfrac{8\pi}{7} +3\cos\dfrac{24\pi}{7}$
$$=(\cos\frac{2\pi}{7} +\cos\frac{4\pi}{7} + \cos\frac{8\pi}{7}) +3(\cos\frac{6\pi}{7} + \cos\frac{12\pi}{7} +\cos\frac{24\pi}{7})$$
$$=(\cos\frac{2\pi}{7} +\cos\frac{4\pi}{7} + \cos(2\pi-\frac{8\pi}{7}) +3(\cos\frac{6\pi}{7} + \cos(2\pi-\frac{12\pi}{7}) +3\cos(4\pi-\frac{24\pi}{7})$$
$$=(\cos\frac{2\pi}{7} +\cos\frac{4\pi}{7} + \cos\frac{6\pi}{7}) +3(\cos\frac{6\pi}{7} + \cos\frac{2\pi}{7} +3\cos\frac{4\pi}{7})$$
$$=4(\cos\frac{2\pi}{7} +\cos\frac{4\pi}{7} + \cos\frac{6\pi}{7})$$
$$

\therefore \cos^3\frac{2\pi}{7} + \cos^3\frac{4\pi}{7} + \cos^3\frac{8\pi}{7}=\cos\frac{2\pi}{7} +\cos\frac{4\pi}{7} + \cos\frac{6\pi}{7}$$

If we let

$$x = \cos\frac{2\pi}{7} +\cos\frac{4\pi}{7} + \cos\frac{6\pi}{7}$$

Multiply through by $2\sin \dfrac{\pi}{7}$, we get

$$\begin{align*}2x\sin \frac{\pi}{7} &=2\cos\frac{2\pi}{7}\sin \frac{\pi}{7} + 2\cos\frac{4\pi}{7}\sin \frac{\pi}{7} + 2\cos\frac{6\pi}{7}\sin \frac{\pi}{7}\\&== sin \frac{3\pi}{7} - sin \frac{\pi}{7} + sin \frac{5\pi}{7} - sin \frac{3\pi}{7} + sin \frac{7\pi}{7} - sin \frac{5\pi}{7}\\&= sin \pi - sin \frac{\pi}{7}\\&=-\sin \frac{\pi}{7}\end{align*}$$$\therefore x = -\dfrac{1}{2}$

or

$$\cos^3\frac{2\pi}{7} + \cos^3\frac{4\pi}{7} + \cos^3\frac{8\pi}{7} = -\frac{1}{2}$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K