Trig identities Fourier Analysis

Click For Summary
SUMMARY

The forum discussion focuses on proving the trigonometric identity involving sine and cosine functions: $$ \frac{\sin\left(\frac{n + 1}{2}\theta\right)}{\sin\frac{\theta}{2}}\cos\frac{n}{2}\theta = \frac{1}{2} + \frac{\sin\left(n + \frac{1}{2}\right)\theta}{2\sin\frac{\theta}{2}}. $$ Participants suggest using the Product to Sum identity to simplify the expression and arrive at the conclusion. The discussion highlights the importance of understanding trigonometric identities and their applications in Fourier analysis.

PREREQUISITES
  • Trigonometric identities, specifically Product to Sum identities.
  • Understanding of sine and cosine functions.
  • Basic knowledge of Fourier analysis concepts.
  • Familiarity with mathematical proofs and manipulation of equations.
NEXT STEPS
  • Study the Product to Sum identities in trigonometry.
  • Explore advanced applications of trigonometric identities in Fourier analysis.
  • Learn about the derivation and proof techniques for trigonometric identities.
  • Investigate the implications of these identities in signal processing.
USEFUL FOR

Mathematicians, physics students, engineers, and anyone interested in advanced trigonometry and its applications in Fourier analysis and signal processing.

Dustinsfl
Messages
2,217
Reaction score
5
Prove the identities
$$
\frac{\sin\left(\frac{n + 1}{2}\theta\right)}{\sin\frac{\theta}{2}}\cos\frac{n}{2}\theta = \frac{1}{2} + \frac{\sin\left(n + \frac{1}{2}\right)\theta}{2\sin\frac{\theta}{2}}
$$
By using the identity $\sin\alpha + beta$, I was able to obtain the $1/2$ but now I am not to sure with what to do.
$$
\frac{(\sin\frac{n\theta}{2}\cos\frac{\theta}{2}+\sin\frac{\theta}{2}\cos\frac{n\theta}{2})\cos\frac{n\theta}{2}}{\sin\frac{\theta}{2}} = \frac{1}{2} + \frac{1}{2}\cos n\theta + \frac{\sin\frac{n\theta}{2}\cos\frac{n\theta}{2} \cos\frac{\theta}{2}}{\sin\frac{\theta}{2}}
$$

Any suggestions?
 
Physics news on Phys.org
\frac{(\sin\frac{n\theta}{2}\cos\frac{\theta}{2}+\ sin\frac{\theta}{2}\cos\frac{n\theta}{2})\cos\frac {n\theta}{2}}{\sin\frac{\theta}{2}} = \frac{1}{2} + \frac{1}{2}\cos n\theta + \frac{\sin\frac{n\theta}{2}\cos\frac{n\theta}{2} \cos\frac{\theta}{2}}{\sin\frac{\theta}{2}}

\frac{1}{2} + \frac{1}{2}\cos n\theta + \frac{\sin\frac{n\theta}{2}\cos\frac{n\theta}{2} \cos\frac{\theta}{2}}{\sin\frac{\theta}{2}}

\frac{1}{2} + \frac{\cos n\theta \sin \frac{\theta}{2} + 2 \sin \frac{n\theta}{2} \cos \frac{n\theta}{2} \cos \frac{\theta}{2} }{ 2 \sin \frac{\theta}{2} }

using \sin 2x = 2 \sin x \cos x

\frac{1}{2} + \frac{\cos n\theta \sin \frac{\theta}{2} + \sin n\theta \cos \frac{\theta}{2} }{ 2 \sin \frac{\theta}{2} }

note that \sin a+b = \sin a \cos b + \cos a \sin b
 
dwsmith said:
Prove the identities
$$
\frac{\sin\left(\frac{n + 1}{2}\theta\right)}{\sin\frac{\theta}{2}}\cos\frac{n}{2}\theta = \frac{1}{2} + \frac{\sin\left(n + \frac{1}{2}\right)\theta}{2\sin\frac{\theta}{2}}
$$
By using the identity $\sin\alpha + beta$, I was able to obtain the $1/2$ but now I am not to sure with what to do.
$$
\frac{(\sin\frac{n\theta}{2}\cos\frac{\theta}{2}+\sin\frac{\theta}{2}\cos\frac{n\theta}{2})\cos\frac{n\theta}{2}}{\sin\frac{\theta}{2}} = \frac{1}{2} + \frac{1}{2}\cos n\theta + \frac{\sin\frac{n\theta}{2}\cos\frac{n\theta}{2} \cos\frac{\theta}{2}}{\sin\frac{\theta}{2}}
$$

Any suggestions?

Hi dwsmith, :)

This can be proved using the Product to Sum identity.

\begin{eqnarray}

\frac{\sin\left(\frac{n + 1}{2}\theta\right) \cos\frac{n}{2}\theta}{\sin\frac{\theta}{2}}&=& \frac{\sin\left( \frac{2n + 1}{2}\theta\right)+\sin \left(\frac{\theta}{2} \right)}{2\sin\frac{\theta}{2}}\\

&=& \frac{1}{2} + \frac{\sin\left(n + \frac{1}{2}\right)\theta}{2\sin\frac{\theta}{2}}

\end{eqnarray}

Kind Regards,
Sudharaka.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
885
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
3K