MHB Trig identities Fourier Analysis

Click For Summary
The discussion focuses on proving the trigonometric identity involving sine and cosine functions. A participant successfully derived the term \( \frac{1}{2} \) using the identity \( \sin(\alpha + \beta) \) but expressed uncertainty about the next steps. Another contributor suggested using the Product to Sum identity to facilitate the proof. They demonstrated how to manipulate the equation to arrive at the desired form, confirming the identity. The conversation highlights the collaborative effort in solving complex trigonometric identities.
Dustinsfl
Messages
2,217
Reaction score
5
Prove the identities
$$
\frac{\sin\left(\frac{n + 1}{2}\theta\right)}{\sin\frac{\theta}{2}}\cos\frac{n}{2}\theta = \frac{1}{2} + \frac{\sin\left(n + \frac{1}{2}\right)\theta}{2\sin\frac{\theta}{2}}
$$
By using the identity $\sin\alpha + beta$, I was able to obtain the $1/2$ but now I am not to sure with what to do.
$$
\frac{(\sin\frac{n\theta}{2}\cos\frac{\theta}{2}+\sin\frac{\theta}{2}\cos\frac{n\theta}{2})\cos\frac{n\theta}{2}}{\sin\frac{\theta}{2}} = \frac{1}{2} + \frac{1}{2}\cos n\theta + \frac{\sin\frac{n\theta}{2}\cos\frac{n\theta}{2} \cos\frac{\theta}{2}}{\sin\frac{\theta}{2}}
$$

Any suggestions?
 
Physics news on Phys.org
\frac{(\sin\frac{n\theta}{2}\cos\frac{\theta}{2}+\ sin\frac{\theta}{2}\cos\frac{n\theta}{2})\cos\frac {n\theta}{2}}{\sin\frac{\theta}{2}} = \frac{1}{2} + \frac{1}{2}\cos n\theta + \frac{\sin\frac{n\theta}{2}\cos\frac{n\theta}{2} \cos\frac{\theta}{2}}{\sin\frac{\theta}{2}}

\frac{1}{2} + \frac{1}{2}\cos n\theta + \frac{\sin\frac{n\theta}{2}\cos\frac{n\theta}{2} \cos\frac{\theta}{2}}{\sin\frac{\theta}{2}}

\frac{1}{2} + \frac{\cos n\theta \sin \frac{\theta}{2} + 2 \sin \frac{n\theta}{2} \cos \frac{n\theta}{2} \cos \frac{\theta}{2} }{ 2 \sin \frac{\theta}{2} }

using \sin 2x = 2 \sin x \cos x

\frac{1}{2} + \frac{\cos n\theta \sin \frac{\theta}{2} + \sin n\theta \cos \frac{\theta}{2} }{ 2 \sin \frac{\theta}{2} }

note that \sin a+b = \sin a \cos b + \cos a \sin b
 
dwsmith said:
Prove the identities
$$
\frac{\sin\left(\frac{n + 1}{2}\theta\right)}{\sin\frac{\theta}{2}}\cos\frac{n}{2}\theta = \frac{1}{2} + \frac{\sin\left(n + \frac{1}{2}\right)\theta}{2\sin\frac{\theta}{2}}
$$
By using the identity $\sin\alpha + beta$, I was able to obtain the $1/2$ but now I am not to sure with what to do.
$$
\frac{(\sin\frac{n\theta}{2}\cos\frac{\theta}{2}+\sin\frac{\theta}{2}\cos\frac{n\theta}{2})\cos\frac{n\theta}{2}}{\sin\frac{\theta}{2}} = \frac{1}{2} + \frac{1}{2}\cos n\theta + \frac{\sin\frac{n\theta}{2}\cos\frac{n\theta}{2} \cos\frac{\theta}{2}}{\sin\frac{\theta}{2}}
$$

Any suggestions?

Hi dwsmith, :)

This can be proved using the Product to Sum identity.

\begin{eqnarray}

\frac{\sin\left(\frac{n + 1}{2}\theta\right) \cos\frac{n}{2}\theta}{\sin\frac{\theta}{2}}&=& \frac{\sin\left( \frac{2n + 1}{2}\theta\right)+\sin \left(\frac{\theta}{2} \right)}{2\sin\frac{\theta}{2}}\\

&=& \frac{1}{2} + \frac{\sin\left(n + \frac{1}{2}\right)\theta}{2\sin\frac{\theta}{2}}

\end{eqnarray}

Kind Regards,
Sudharaka.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
734
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
3K