MHB Trig proof: sum of squared cosecants

  • Thread starter Thread starter Greg
  • Start date Start date
  • Tags Tags
    Proof Sum Trig
AI Thread Summary
The discussion focuses on proving the equation involving the sum of squared cosecants: $$\csc^2\left(\dfrac{\pi}{7}\right)+\csc^2\left(\dfrac{2\pi}{7}\right)+\csc^2\left(\dfrac{4\pi}{7}\right)=8$$. Participants suggest using the roots of a polynomial derived from the equation $\tan\, 7x = 0$, leading to a sixth-degree polynomial. The roots correspond to $\cot^2 nx$, and the sum of these roots is calculated to be 5. By adding 1 to each term in the left-hand side, the desired result is obtained. The conversation highlights the application of trigonometric identities and polynomial roots in solving the problem.
Greg
Gold Member
MHB
Messages
1,377
Reaction score
0
Hi! I've tried a couple of approaches with this: converting to complex exponential form and using standard trigonometric identities but have been unable to solve. I suspect DeMoivre's formula applies but I don't see how.Prove $$\csc^2\left(\dfrac{\pi}{7}\right)+\csc^2\left(\dfrac{2\pi}{7}\right)+\csc^2\left(\dfrac{4\pi}{7}\right)=8$$
 
Mathematics news on Phys.org
greg1313 said:
Hi! I've tried a couple of approaches with this: converting to complex exponential form and using standard trigonometric identities but have been unable to solve. I suspect DeMoivre's formula applies but I don't see how.Prove $$\csc^2\left(\dfrac{\pi}{7}\right)+\csc^2\left(\dfrac{2\pi}{7}\right)+\csc^2\left(\dfrac{4\pi}{7}\right)=8$$

you should be able to solve with the following approach ( if there is a problem I shall provide solution tomorrow)

using $\tan\, 7x = 0$ you can find the solution $\tan\, nx$ to be root of $t^6-21t^4+35t^2-7=0$
form the eqaution whose roots are $\frac{1}{t^2}$
you should have the roots $\cot^2 nx$
from this should know the sum of $\cot^2 nx$
add 1 to each term and get the result
 
Last edited:
kaliprasad said:
using $\tan\, 7x = 0$ you can find the solution $\tan\, nx$ to be root of $t^6-21t^4+35t^2-7=0$

I don't understand how to derive this result.
 
greg1313 said:
I don't understand how to derive this result.
from the series expansion of $\tan (2n+1) x$ we have

$\tan 7x = \dfrac{\tan ^7 x -21\tan ^ 5x + 35tan^3 x - 7\ tan\, x }{7\tan^6 x - 35 \tan ^4 x + 21 \tan ^2 x -1}$

as $\tan7x = 0$ for $x = \dfrac{n\pi}{7}$ n = 0 to 7 so

$\tan\,nx$ is root of$t^7 -21t^5 + 35t^3 - 7t= 0 $

as for n = 1 to 6 $\tan\, nx$ is not zero so
n = 1 to 6 $\tan\, nx$ is root of $t^6 -21t^4 + 35t^2 - 7= 0$
$\cot \, nx$ is root of $(\dfrac{1}{t})^6 -21(\dfrac{1}{t})^4 + 35(\dfrac{1}{t})^2 - 7= 0 $

or $7t^6-35t^4 +21t^2 -1=0$
so $\cot^2 nx$ is root of equation $7t^3 - 35 t^2 + 21 t - 1$ = 0
now $\cot^2 x = \cot^2 6x$
$\cot^2 2x = \cot^2 5 x$
$\cot^2 3x = \cot^2 4x$
so the roots are $\cot^2 x,\cot^2 2x,\cot^2 4x$
so we get sum of roots
$\cot^2 x + \cot^2 2x + \cot^2 4x = 5$ and adding 1 to each term on LHS you get the result

edit: I remembered that I have solved a similar problem at http://mathhelpboards.com/challenge-questions-puzzles-28/cotangent-sum-16172.html
and you can put n = 3 to get the result.
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
2
Views
2K
Replies
3
Views
1K
Replies
1
Views
1K
Replies
35
Views
4K
Replies
1
Views
6K
Replies
2
Views
2K
Replies
10
Views
5K
Back
Top