Trigonometric Identities Problem

Click For Summary

Discussion Overview

The discussion revolves around solving trigonometric identities and equations, specifically focusing on finding cotangent and sine values based on given conditions. The problems include evaluating cotangent at specific angles, using cotangent values to find tangent, and determining sine from cotangent in a specific quadrant. The scope includes mathematical reasoning and problem-solving techniques.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Homework-related

Main Points Raised

  • Some participants suggest using trigonometric identities such as $$\sin(\pi-x)=\sin(x)$$ and $$\cos(\pi-x)=-\cos(x)$$ to solve for cotangent values.
  • Others propose that knowing $$\tan(\pi/4)=1$$ can help deduce that $$\tan(\pi-\pi/4)=-1$$, leading to the conclusion that $$\cot(\pi-\pi/4)=-1$$.
  • One participant explains the process of finding $$\sin(\theta)$$ from $$\cot(\theta)=-\frac{9}{2}$$ by establishing a relationship between sine and cosine, and then squaring both sides to eliminate the fraction.
  • Another participant questions the necessity of squaring both sides in the context of solving for $$\sin(\theta)$$.
  • There is a request for resources or websites that provide step-by-step solutions and a comprehensive list of trigonometric identities.

Areas of Agreement / Disagreement

Participants express uncertainty about the best methods to solve the problems, and while some approaches are discussed, no consensus is reached on a single solution path for all problems. The necessity of certain steps, such as squaring both sides, is debated.

Contextual Notes

Limitations include the potential for misunderstanding the application of identities and the implications of squaring both sides of an equation, which may introduce extraneous solutions.

courtbits
Messages
15
Reaction score
0
1) If $$\tan(\pi/4)=1$$, find $$\cot(\pi-\pi/4)$$.

2) If $$\cot(17^{\circ}) = 3.2709$$, find $$\tan(73^{\circ})$$

3) If $$\cot(\theta) = \frac{-9}{2}$$ with $$\theta$$ in Quadrant II, find $$\sin (\theta)$$

---------------------------------------------
I really have no idea how to solve any of these problems. I have more problems similar to it, but I thought one of each different type of problem would help me possibly solve others.
I may have more questions relating to how you got a term in between each step, also if you could possible link a website that shows step-by-step or even all the identities that relate to the problem I shown above, that would be glorious!
I know it's a lot, but thanks in advance!
 
Last edited:
Mathematics news on Phys.org
1. Use the identities $$\sin(\pi-x)=\sin(x)$$ and $$\cos(\pi-x)=-\cos(x)$$. Do you know $$\sin\left(\dfrac{\pi}{4}\right)=\cos\left(\dfrac{\pi}{4}\right)$$?

2. Use the identities $$\cos(90^\circ-x)=\sin(x)$$ and $$\sin(90^\circ-x)=\cos(x)$$.

3. $$\cot(\theta)=-\dfrac92$$

$$\dfrac{\cos(\theta)}{\sin(\theta)}=-\dfrac92$$

$$2\cos(\theta)=-9\sin(\theta)$$

Square both sides:

$$4\cos^2(\theta)=81\sin^2(\theta)$$

Use the identity $$\sin^2(x)+\cos^2(x)=1\implies1-\sin^2(x)=\cos^2(x)$$.

$$4(1-\sin^2(\theta))=81\sin^2(\theta)$$

$$4=85\sin^2(\theta)$$

$$\sin^2(\theta)=\dfrac{4}{85}$$

$$\sin(\theta)=\pm\dfrac{2}{\sqrt{85}}$$

As $$\theta$$ is in the second quadrant, we choose the positive root:

$$\sin(\theta)=\dfrac{2}{\sqrt{85}}$$

For a list of identities and related information, see here.
 
courtbits said:
1) If $$\tan(\pi/4)=1$$, find $$\cot(\pi-\pi/4)$$.

2) If $$\cot(17^{\circ}) = 3.2709$$, find $$\tan(73^{\circ})$$

3) If $$\cot(\theta) = \frac{-9}{2}$$ with $$\theta$$ in Quadrant II, find $$\sin (\theta)$$

---------------------------------------------
I really have no idea how to solve any of these problems. I have more problems similar to it, but I thought one of each different type of problem would help me possibly solve others.
I may have more questions relating to how you got a term in between each step, also if you could possible link a website that shows step-by-step or even all the identities that relate to the problem I shown above, that would be glorious!
I know it's a lot, but thanks in advance!

You should know by symmetry that $\displaystyle \begin{align*} \tan{ \left( \pi - \frac{\pi}{4} \right) } = -\tan{ \left( \frac{\pi}{4} \right) } = -1 \end{align*}$, and so what is $\displaystyle \begin{align*} \cot{ \left( \pi - \frac{\pi}{4} \right) } = \frac{1}{\tan{ \left( \pi - \frac{\pi}{4} \right) } } \end{align*}$?
 
greg1313 said:
1. Use the identities $$\sin(\pi-x)=\sin(x)$$ and $$\cos(\pi-x)=-\cos(x)$$. Do you know $$\sin\left(\dfrac{\pi}{4}\right)=\cos\left(\dfrac{\pi}{4}\right)$$?

2. Use the identities $$\cos(90^\circ-x)=\sin(x)$$ and $$\sin(90^\circ-x)=\cos(x)$$.

3. $$\cot(\theta)=-\dfrac92$$

$$\dfrac{\cos(\theta)}{\sin(\theta)}=-\dfrac92$$

$$2\cos(\theta)=-9\sin(\theta)$$

Square both sides:

$$4\cos^2(\theta)=81\sin^2(\theta)$$

Use the identity $$\sin^2(x)+\cos^2(x)=1\implies1-\sin^2(x)=\cos^2(x)$$.

$$4(1-\sin^2(\theta))=81\sin^2(\theta)$$

$$4=85\sin^2(\theta)$$

$$\sin^2(\theta)=\dfrac{4}{85}$$

$$\sin(\theta)=\pm\dfrac{2}{\sqrt{85}}$$

As $$\theta$$ is in the second quadrant, we choose the positive root:

$$\sin(\theta)=\dfrac{2}{\sqrt{85}}$$

For a list of identities and related information, see here.
Problem 3: Why do we have to square both sides?
 
I squared both sides to get an equation in terms of $$\sin^2(\theta)$$ which I could then solve for $$\sin(\theta)$$.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
24
Views
3K