MHB Trigonometric Identities Problem

courtbits
Messages
15
Reaction score
0
1) If $$\tan(\pi/4)=1$$, find $$\cot(\pi-\pi/4)$$.

2) If $$\cot(17^{\circ}) = 3.2709$$, find $$\tan(73^{\circ})$$

3) If $$\cot(\theta) = \frac{-9}{2}$$ with $$\theta$$ in Quadrant II, find $$\sin (\theta)$$

---------------------------------------------
I really have no idea how to solve any of these problems. I have more problems similar to it, but I thought one of each different type of problem would help me possibly solve others.
I may have more questions relating to how you got a term in between each step, also if you could possible link a website that shows step-by-step or even all the identities that relate to the problem I shown above, that would be glorious!
I know it's a lot, but thanks in advance!
 
Last edited:
Mathematics news on Phys.org
1. Use the identities $$\sin(\pi-x)=\sin(x)$$ and $$\cos(\pi-x)=-\cos(x)$$. Do you know $$\sin\left(\dfrac{\pi}{4}\right)=\cos\left(\dfrac{\pi}{4}\right)$$?

2. Use the identities $$\cos(90^\circ-x)=\sin(x)$$ and $$\sin(90^\circ-x)=\cos(x)$$.

3. $$\cot(\theta)=-\dfrac92$$

$$\dfrac{\cos(\theta)}{\sin(\theta)}=-\dfrac92$$

$$2\cos(\theta)=-9\sin(\theta)$$

Square both sides:

$$4\cos^2(\theta)=81\sin^2(\theta)$$

Use the identity $$\sin^2(x)+\cos^2(x)=1\implies1-\sin^2(x)=\cos^2(x)$$.

$$4(1-\sin^2(\theta))=81\sin^2(\theta)$$

$$4=85\sin^2(\theta)$$

$$\sin^2(\theta)=\dfrac{4}{85}$$

$$\sin(\theta)=\pm\dfrac{2}{\sqrt{85}}$$

As $$\theta$$ is in the second quadrant, we choose the positive root:

$$\sin(\theta)=\dfrac{2}{\sqrt{85}}$$

For a list of identities and related information, see here.
 
courtbits said:
1) If $$\tan(\pi/4)=1$$, find $$\cot(\pi-\pi/4)$$.

2) If $$\cot(17^{\circ}) = 3.2709$$, find $$\tan(73^{\circ})$$

3) If $$\cot(\theta) = \frac{-9}{2}$$ with $$\theta$$ in Quadrant II, find $$\sin (\theta)$$

---------------------------------------------
I really have no idea how to solve any of these problems. I have more problems similar to it, but I thought one of each different type of problem would help me possibly solve others.
I may have more questions relating to how you got a term in between each step, also if you could possible link a website that shows step-by-step or even all the identities that relate to the problem I shown above, that would be glorious!
I know it's a lot, but thanks in advance!

You should know by symmetry that $\displaystyle \begin{align*} \tan{ \left( \pi - \frac{\pi}{4} \right) } = -\tan{ \left( \frac{\pi}{4} \right) } = -1 \end{align*}$, and so what is $\displaystyle \begin{align*} \cot{ \left( \pi - \frac{\pi}{4} \right) } = \frac{1}{\tan{ \left( \pi - \frac{\pi}{4} \right) } } \end{align*}$?
 
greg1313 said:
1. Use the identities $$\sin(\pi-x)=\sin(x)$$ and $$\cos(\pi-x)=-\cos(x)$$. Do you know $$\sin\left(\dfrac{\pi}{4}\right)=\cos\left(\dfrac{\pi}{4}\right)$$?

2. Use the identities $$\cos(90^\circ-x)=\sin(x)$$ and $$\sin(90^\circ-x)=\cos(x)$$.

3. $$\cot(\theta)=-\dfrac92$$

$$\dfrac{\cos(\theta)}{\sin(\theta)}=-\dfrac92$$

$$2\cos(\theta)=-9\sin(\theta)$$

Square both sides:

$$4\cos^2(\theta)=81\sin^2(\theta)$$

Use the identity $$\sin^2(x)+\cos^2(x)=1\implies1-\sin^2(x)=\cos^2(x)$$.

$$4(1-\sin^2(\theta))=81\sin^2(\theta)$$

$$4=85\sin^2(\theta)$$

$$\sin^2(\theta)=\dfrac{4}{85}$$

$$\sin(\theta)=\pm\dfrac{2}{\sqrt{85}}$$

As $$\theta$$ is in the second quadrant, we choose the positive root:

$$\sin(\theta)=\dfrac{2}{\sqrt{85}}$$

For a list of identities and related information, see here.
Problem 3: Why do we have to square both sides?
 
I squared both sides to get an equation in terms of $$\sin^2(\theta)$$ which I could then solve for $$\sin(\theta)$$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
7
Views
3K
Replies
9
Views
2K
Replies
2
Views
2K
Replies
7
Views
3K
Back
Top