Trigonometric substitution, a case I'd like to share

  • Context: High School 
  • Thread starter Thread starter mcastillo356
  • Start date Start date
  • Tags Tags
    Calculus
Click For Summary

Discussion Overview

The discussion revolves around the technique of trigonometric substitution in calculus, specifically focusing on integrals involving the expression ##a^2 - x^2##. Participants explore the derivation of the substitution, the conditions under which it is valid, and the implications of the domain and range of the inverse sine function.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant questions how the expression ##dx = a\cos\theta\,d\theta## is derived and whether it relates to the Chain Rule.
  • Another participant clarifies that the expression arises from the first derivative of ##x = a\sin\theta## with respect to ##\theta##, stating it does not involve the Chain Rule.
  • There is a discussion about the requirement that ##a > 0## and whether it is acceptable to use the principal square root ##|a| = \sqrt{a^2}## in the context of the integral.
  • Participants note the domain of ##x## in the integral is ##-a \leq x \leq a##, leading to the conclusion that ##-1 \leq \frac{x}{a} \leq 1##, which is necessary for the domain of the arcsine function.
  • There is a mention of the range of the arcsine function being ##[-\frac{\pi}{2}, \frac{\pi}{2}]## and the positivity of the cosine function within that range.
  • A later reply corrects a notation issue regarding the expression ##\frac{x}{a}##.

Areas of Agreement / Disagreement

Participants generally agree on the derivation of the expression for ##dx## and the conditions for ##a##, but there is some uncertainty regarding the use of the principal square root and the notation used in the discussion.

Contextual Notes

Participants express assumptions about the positivity of ##a## and the implications for the domain and range of the functions involved, but these assumptions are not universally accepted or resolved within the discussion.

mcastillo356
Gold Member
Messages
660
Reaction score
364
TL;DR
There are some steps I haven't got a clue, and some others I should have, but ain't.
Hi, PF
First I will quote it; next the doubts and my attempt:

"In mathematics, trigonometric substitution is the replacement of trigonometric functions for other expresions. In calculus, trigonometric substitution is a technique for evaluating integrals. (...)
Case I: Integrands containing ##a^2-x^2##
Let ##x=a\sin\theta##, and use the identity ##1-\sin^2\theta=\cos^2\theta##
(...)
Example 1
In the integral
##\displaystyle\int{\displaystyle\frac{dx}{\sqrt{a^2-x^2}}}##
we may use
##x=a\sin\theta,\quad{dx=a\cos\theta\,d\theta,\quad{\theta=\arcsin{\displaystyle\frac{x}{a}}}}##
Then,
##\displaystyle\int{\displaystyle\frac{dx}{\sqrt{a^2-x^2}}}=\displaystyle\int{\displaystyle\frac{a\cos\theta\,d\theta}{\sqrt{a^2-a^2\sin^2\theta}}}##
##\qquad{=\displaystyle\int{\displaystyle\frac{a\cos\theta\,d\theta}{\sqrt{a^2(1-\sin^2\theta)}}}}##
##\qquad{=\displaystyle\frac{a\cos\theta\,d\theta}{\displaystyle\sqrt{a^2\cos^2\theta}}}##
##\qquad{=\displaystyle\int{d\theta}}##
##\qquad{=\theta+C}##
##\qquad{=\arcsin{\displaystyle\frac{x}{a}}+C}##
The above step requires that ##a>0## and ##\cos\theta>0##. We can choose a to be the principal root of ##a^2##, and impose the restriction ##-\pi/2<\theta\<\pi/2## by using the inverse sine function." (Source: Wikipedia, "Trigonometric substitution".)

Doubts:
(i)- ##dx=a\cos\theta\,d\theta##: how is it derived?; any relationship with the Chain Rule?.
(ii)- It is required ##a>0## and ##\cos\theta>0##; every nonnegative real number has a unique nonnegative square root, called the principal square root or simply the square root. Am I right?:
(iii)- ##-1\leq x\leq 1## and ##-\pi/2\leq y\leq## are the domain and the range of ##y=\arcsin{(x)}##. I've plotted it, etc; should I explore ##x=\arcsin{(y)}##? It's clear that ##y=\cos{(x)}## is positive at the first and fourth quadrants.
Well, as you can see, I've put together doubts and attempt.
Greetings!
Trig_Sub_Triangle_1.png
 
Physics news on Phys.org
mcastillo356 said:
(i)- ##dx=a\cos\theta\,d\theta##: how is it derived?; any relationship with the Chain Rule?.
$$x = a\sin \theta \ \Rightarrow \ \frac{dx}{d\theta} = a\cos \theta \ \Rightarrow \ dx = (a\cos \theta)\ d\theta$$
mcastillo356 said:
(ii)- It is required ##a>0## and ##\cos\theta>0##; every nonnegative real number has a unique nonnegative square root, called the principal square root or simply the square root. Am I right?:
Technically, you could use ##|a| = \sqrt a^2## in your solution. However, you might as well assume ##a > 0##, given that you have only ##a^2## in the original integral.
mcastillo356 said:
(iii)- ##-1\leq x\leq 1## and ##-\pi/2\leq y\leq## are the domain and the range of ##y=\arcsin{(x)}##. I've plotted it, etc; should I explore ##x=\arcsin{(y)}##? It's clear that ##y=\cos{(x)}## is positive at the first and fourth quadrants.
Well, as you can see, I've put together doubts and attempt.
Greetings!
View attachment 331790
In the original integral (assuming ##a > 0##), we have ##-a \le x \le a##. Hence ##-1 \le \frac x a \le 1##. This puts ##\frac x a ## within the domain of ##\arcsin##. The range of ##\arcsin## is ##[-\frac \pi 2, \frac \pi 2]## and ##\cos## is non-negative on that range.
 
Last edited:
  • Like
Likes   Reactions: mcastillo356 and e_jane
Hi, PF, PeroK
PeroK said:
x = a\sin \theta \ \Rightarrow \ \frac{dx}{d\theta} = a\cos \theta \ \Rightarrow \ dx = (a\cos \theta)\ d\theta
No chain rule. It is just the first derivative of ##x## with respect to ##\theta##, in the Leibniz notation.
Technically, you could use ##|a| = \sqrt a^2 ## in your solution. However, you might as well assume ##a > 0##, given that you have only ##a^2## in the original integral.
Personally, I prefer the second choice. I keep in mind the concept of ##a## as the principal root of ##a^2##: there must be a transition from ##a## squared to ##a>0##.
In the original integral (assuming ##a > 0##), we have ##-a \le x \le a##. Hence ##-1 \le \frac a x \le 1##. This puts ##\frac a x## within the domain of ##\arcsin##. The range of ##\arcsin## is ##[-\frac \pi 2, \frac \pi 2]## and ##\cos## is non-negative on that range.
cosine & sine.png
Shouldn't it be ##\frac x a##?
PD: Post without preview.
 
mcastillo356 said:
Shouldn't it be ##\frac x a##?
Yes, fixed.
 
  • Like
Likes   Reactions: mcastillo356

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K