Trigonometric substitution, a case I'd like to share

  • Context: High School 
  • Thread starter Thread starter mcastillo356
  • Start date Start date
  • Tags Tags
    Calculus
Click For Summary
SUMMARY

This discussion focuses on the technique of trigonometric substitution in calculus, specifically for integrals involving the form ##a^2 - x^2##. The integral example provided is ##\int \frac{dx}{\sqrt{a^2 - x^2}}##, where the substitution ##x = a\sin\theta## leads to the transformation of the integral into a simpler form. Key points include the derivation of ##dx = a\cos\theta\,d\theta## from the substitution and the requirement that ##a > 0## and ##\cos\theta > 0## for the method to be valid. The discussion also clarifies the domains and ranges of the functions involved, particularly for the arcsine function.

PREREQUISITES
  • Understanding of trigonometric functions and their properties
  • Familiarity with integral calculus and techniques for evaluating integrals
  • Knowledge of the arcsine function and its domain and range
  • Basic differentiation concepts, particularly the derivative of sine
NEXT STEPS
  • Study the derivation of trigonometric identities and their applications in calculus
  • Learn about the properties and applications of the arcsine function
  • Explore other forms of trigonometric substitution for different integral types
  • Investigate the relationship between trigonometric functions and their derivatives
USEFUL FOR

Students and educators in mathematics, particularly those studying calculus, as well as anyone interested in mastering integration techniques involving trigonometric functions.

mcastillo356
Gold Member
Messages
658
Reaction score
361
TL;DR
There are some steps I haven't got a clue, and some others I should have, but ain't.
Hi, PF
First I will quote it; next the doubts and my attempt:

"In mathematics, trigonometric substitution is the replacement of trigonometric functions for other expresions. In calculus, trigonometric substitution is a technique for evaluating integrals. (...)
Case I: Integrands containing ##a^2-x^2##
Let ##x=a\sin\theta##, and use the identity ##1-\sin^2\theta=\cos^2\theta##
(...)
Example 1
In the integral
##\displaystyle\int{\displaystyle\frac{dx}{\sqrt{a^2-x^2}}}##
we may use
##x=a\sin\theta,\quad{dx=a\cos\theta\,d\theta,\quad{\theta=\arcsin{\displaystyle\frac{x}{a}}}}##
Then,
##\displaystyle\int{\displaystyle\frac{dx}{\sqrt{a^2-x^2}}}=\displaystyle\int{\displaystyle\frac{a\cos\theta\,d\theta}{\sqrt{a^2-a^2\sin^2\theta}}}##
##\qquad{=\displaystyle\int{\displaystyle\frac{a\cos\theta\,d\theta}{\sqrt{a^2(1-\sin^2\theta)}}}}##
##\qquad{=\displaystyle\frac{a\cos\theta\,d\theta}{\displaystyle\sqrt{a^2\cos^2\theta}}}##
##\qquad{=\displaystyle\int{d\theta}}##
##\qquad{=\theta+C}##
##\qquad{=\arcsin{\displaystyle\frac{x}{a}}+C}##
The above step requires that ##a>0## and ##\cos\theta>0##. We can choose a to be the principal root of ##a^2##, and impose the restriction ##-\pi/2<\theta\<\pi/2## by using the inverse sine function." (Source: Wikipedia, "Trigonometric substitution".)

Doubts:
(i)- ##dx=a\cos\theta\,d\theta##: how is it derived?; any relationship with the Chain Rule?.
(ii)- It is required ##a>0## and ##\cos\theta>0##; every nonnegative real number has a unique nonnegative square root, called the principal square root or simply the square root. Am I right?:
(iii)- ##-1\leq x\leq 1## and ##-\pi/2\leq y\leq## are the domain and the range of ##y=\arcsin{(x)}##. I've plotted it, etc; should I explore ##x=\arcsin{(y)}##? It's clear that ##y=\cos{(x)}## is positive at the first and fourth quadrants.
Well, as you can see, I've put together doubts and attempt.
Greetings!
Trig_Sub_Triangle_1.png
 
Physics news on Phys.org
mcastillo356 said:
(i)- ##dx=a\cos\theta\,d\theta##: how is it derived?; any relationship with the Chain Rule?.
$$x = a\sin \theta \ \Rightarrow \ \frac{dx}{d\theta} = a\cos \theta \ \Rightarrow \ dx = (a\cos \theta)\ d\theta$$
mcastillo356 said:
(ii)- It is required ##a>0## and ##\cos\theta>0##; every nonnegative real number has a unique nonnegative square root, called the principal square root or simply the square root. Am I right?:
Technically, you could use ##|a| = \sqrt a^2## in your solution. However, you might as well assume ##a > 0##, given that you have only ##a^2## in the original integral.
mcastillo356 said:
(iii)- ##-1\leq x\leq 1## and ##-\pi/2\leq y\leq## are the domain and the range of ##y=\arcsin{(x)}##. I've plotted it, etc; should I explore ##x=\arcsin{(y)}##? It's clear that ##y=\cos{(x)}## is positive at the first and fourth quadrants.
Well, as you can see, I've put together doubts and attempt.
Greetings!
View attachment 331790
In the original integral (assuming ##a > 0##), we have ##-a \le x \le a##. Hence ##-1 \le \frac x a \le 1##. This puts ##\frac x a ## within the domain of ##\arcsin##. The range of ##\arcsin## is ##[-\frac \pi 2, \frac \pi 2]## and ##\cos## is non-negative on that range.
 
Last edited:
  • Like
Likes   Reactions: mcastillo356 and e_jane
Hi, PF, PeroK
PeroK said:
x = a\sin \theta \ \Rightarrow \ \frac{dx}{d\theta} = a\cos \theta \ \Rightarrow \ dx = (a\cos \theta)\ d\theta
No chain rule. It is just the first derivative of ##x## with respect to ##\theta##, in the Leibniz notation.
Technically, you could use ##|a| = \sqrt a^2 ## in your solution. However, you might as well assume ##a > 0##, given that you have only ##a^2## in the original integral.
Personally, I prefer the second choice. I keep in mind the concept of ##a## as the principal root of ##a^2##: there must be a transition from ##a## squared to ##a>0##.
In the original integral (assuming ##a > 0##), we have ##-a \le x \le a##. Hence ##-1 \le \frac a x \le 1##. This puts ##\frac a x## within the domain of ##\arcsin##. The range of ##\arcsin## is ##[-\frac \pi 2, \frac \pi 2]## and ##\cos## is non-negative on that range.
cosine & sine.png
Shouldn't it be ##\frac x a##?
PD: Post without preview.
 
mcastillo356 said:
Shouldn't it be ##\frac x a##?
Yes, fixed.
 
  • Like
Likes   Reactions: mcastillo356

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K