MHB Trigonometry challenge - cosine product

Greg
Gold Member
MHB
Messages
1,377
Reaction score
0
Prove $$\cos20^\circ\cdot\cos40^\circ\cdot\cos80^\circ=\frac18$$
 
Mathematics news on Phys.org
greg1313 said:
Prove $$\cos20^\circ\cdot\cos40^\circ\cdot\cos80^\circ=\frac18$$

My solution:
$\begin{align*}\cos 60^{\circ}&=4\cos^3 20^{\circ}-3\cos 20^{\circ}\\&=\cos 20^{\circ}(4\cos^2 20^{\circ}-3)\\&=\cos 20^{\circ}(2(2\cos^2 20^{\circ}-1)-1)\\&=\cos 20^{\circ}(2(\cos 40^{\circ})-1)\\&=\cos 20^{\circ}(2\cos 40^{\circ}+2\cos 120^{\circ})\\&=2\cos 20^{\circ}(\cos 40^{\circ}+\cos 120^{\circ})\\&=2\cos 20^{\circ}(2\cos 40^{\circ}\cos 80^{\circ})\\&=4\cos 20^{\circ}\cos 40^{\circ}\cos 80^{\circ}\end{align*}$

$\therefore \cos 20^{\circ}\cos 40^{\circ}\cos 80^{\circ}=\dfrac{1}{8}$
 
greg1313 said:
Prove $$\cos20^\circ\cdot\cos40^\circ\cdot\cos80^\circ=\frac18$$

$8 \sin 20^\circ\cdot \cos20^\circ\cdot\cos40^\circ\cdot\cos80^\circ$
= $4 \sin 40^\circ \cdot\cos40^\circ\cdot\cos80^\circ$
= $2 \sin 80^\circ \cdot \cos80^\circ$
= $\sin 160^\circ$
= $\sin 20^\circ$
dividing both sides by $8 \sin 20^\circ$ we get the result
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top