MHB Trigonometry challenge - cosine product

Greg
Gold Member
MHB
Messages
1,377
Reaction score
0
Prove $$\cos20^\circ\cdot\cos40^\circ\cdot\cos80^\circ=\frac18$$
 
Mathematics news on Phys.org
greg1313 said:
Prove $$\cos20^\circ\cdot\cos40^\circ\cdot\cos80^\circ=\frac18$$

My solution:
$\begin{align*}\cos 60^{\circ}&=4\cos^3 20^{\circ}-3\cos 20^{\circ}\\&=\cos 20^{\circ}(4\cos^2 20^{\circ}-3)\\&=\cos 20^{\circ}(2(2\cos^2 20^{\circ}-1)-1)\\&=\cos 20^{\circ}(2(\cos 40^{\circ})-1)\\&=\cos 20^{\circ}(2\cos 40^{\circ}+2\cos 120^{\circ})\\&=2\cos 20^{\circ}(\cos 40^{\circ}+\cos 120^{\circ})\\&=2\cos 20^{\circ}(2\cos 40^{\circ}\cos 80^{\circ})\\&=4\cos 20^{\circ}\cos 40^{\circ}\cos 80^{\circ}\end{align*}$

$\therefore \cos 20^{\circ}\cos 40^{\circ}\cos 80^{\circ}=\dfrac{1}{8}$
 
greg1313 said:
Prove $$\cos20^\circ\cdot\cos40^\circ\cdot\cos80^\circ=\frac18$$

$8 \sin 20^\circ\cdot \cos20^\circ\cdot\cos40^\circ\cdot\cos80^\circ$
= $4 \sin 40^\circ \cdot\cos40^\circ\cdot\cos80^\circ$
= $2 \sin 80^\circ \cdot \cos80^\circ$
= $\sin 160^\circ$
= $\sin 20^\circ$
dividing both sides by $8 \sin 20^\circ$ we get the result
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top