Trigonometry challenge - cosine product

Click For Summary
SUMMARY

The discussion centers on proving the identity $$\cos20^\circ\cdot\cos40^\circ\cdot\cos80^\circ=\frac{1}{8}$$. Participants present various mathematical approaches and insights to validate this trigonometric equation. The consensus is that the identity holds true, with several proofs provided to demonstrate its accuracy. Key techniques involve the use of product-to-sum formulas and properties of cosine functions.

PREREQUISITES
  • Understanding of trigonometric identities
  • Familiarity with product-to-sum formulas
  • Knowledge of angle transformations in trigonometry
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study product-to-sum identities in trigonometry
  • Explore proofs of trigonometric identities
  • Investigate the properties of cosine functions
  • Practice solving trigonometric equations involving multiple angles
USEFUL FOR

Mathematics students, educators, and anyone interested in advanced trigonometric proofs and identities.

Greg
Gold Member
MHB
Messages
1,377
Reaction score
0
Prove $$\cos20^\circ\cdot\cos40^\circ\cdot\cos80^\circ=\frac18$$
 
Mathematics news on Phys.org
greg1313 said:
Prove $$\cos20^\circ\cdot\cos40^\circ\cdot\cos80^\circ=\frac18$$

My solution:
$\begin{align*}\cos 60^{\circ}&=4\cos^3 20^{\circ}-3\cos 20^{\circ}\\&=\cos 20^{\circ}(4\cos^2 20^{\circ}-3)\\&=\cos 20^{\circ}(2(2\cos^2 20^{\circ}-1)-1)\\&=\cos 20^{\circ}(2(\cos 40^{\circ})-1)\\&=\cos 20^{\circ}(2\cos 40^{\circ}+2\cos 120^{\circ})\\&=2\cos 20^{\circ}(\cos 40^{\circ}+\cos 120^{\circ})\\&=2\cos 20^{\circ}(2\cos 40^{\circ}\cos 80^{\circ})\\&=4\cos 20^{\circ}\cos 40^{\circ}\cos 80^{\circ}\end{align*}$

$\therefore \cos 20^{\circ}\cos 40^{\circ}\cos 80^{\circ}=\dfrac{1}{8}$
 
greg1313 said:
Prove $$\cos20^\circ\cdot\cos40^\circ\cdot\cos80^\circ=\frac18$$

$8 \sin 20^\circ\cdot \cos20^\circ\cdot\cos40^\circ\cdot\cos80^\circ$
= $4 \sin 40^\circ \cdot\cos40^\circ\cdot\cos80^\circ$
= $2 \sin 80^\circ \cdot \cos80^\circ$
= $\sin 160^\circ$
= $\sin 20^\circ$
dividing both sides by $8 \sin 20^\circ$ we get the result
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K