- #1
Keen94
- 41
- 1
Homework Statement
Find the truth set of the given equivalence. Assume U=ℝ
#56. (x2=1)↔[(x=1)∨(x=-1)]
Source: Principles of Mathematics by Allendoefer and Oakley section 1.10
Homework Equations
{x I px↔qx}=(P∩Q)∪(P'∩Q')[/B]
The Attempt at a Solution
P={x I px}={x I x2=1}={x I x=1 or -1)
P'={x I x≠1 or -1}
Q={x I qx is true}={x I (x=1)∨(x=-1)}
qx=ax∨bx
{x I ax∨bx}=A∪B
Q=A∪B
Let ax be x=1 and bx be x=-1
A={x I ax} and B={x I bx}
A={1} and B={-1}
A∪B={-1,1}
Q={x I x=-1 or 1}
Q'={x I x≠-1 or 1}
(P∩Q)={x I x=1 or -1}∩{x I x=1 or -1}={x I x=1 or -1}
(P'∩Q')={x I x≠1 or -1}∩{x I x≠1 or -1}={x I x≠1 or -1}
(P∩Q)∪(P'∩Q')={x I x=1 or -1}∪{x I x≠1 or -1}= U[/B]
Just wanted to know if someone could go over my work and verify it. Thank you for your time.