MHB Two more PMF/joint PMF questions

  • Thread starter Thread starter nacho-man
  • Start date Start date
AI Thread Summary
The discussion addresses two questions related to probability mass functions (PMF) and convergence. For question 2, there is confusion about how a certain series converges to one, with one participant suggesting a ratio test that leads to a conclusion of zero instead. In question 3, participants analyze the setup of a PMF where Y is defined as the minimum of 0 and X, questioning the probabilities assigned to various outcomes. They note that since Y cannot exceed 0, certain probabilities, like P(Y>0) and P(Y<a), are zero, while discussing the values for Y when X is uniformly distributed. The conversation emphasizes the need for clarity in the setup and calculations of these probabilities.
nacho-man
Messages
166
Reaction score
0
Please refer to the attached images.

For question 2,
How does this converge to one? i tried using a ratio test but thought it converged to zero

For question 3,
I understand how they get a $\frac{1}{1+b-a}$ in the denominator, but not how they set up the rest.
for example if Y = min(0,X)
then Y>0 is impossible because the min(0,X) restricts the value of Y to 0. Thus making $P(Y>0) = 0$
Similarly, $P(Y<a) = 0$ since the bounds are restricted from $a<0<b$.

for $y=0$ this can occur when X takes any value over $[0,b]$. There are $b+1$ such values.

However, for $a<y<0$, aren't there $0-a+1$ such values? Why do they simply have a $1$ in the numerator.
 

Attachments

  • convergence.png
    convergence.png
    4.5 KB · Views: 86
  • q3.png
    q3.png
    9.3 KB · Views: 79
Physics news on Phys.org
nacho said:
Please refer to the attached images.

For question 2,
How does this converge to one? i tried using a ratio test but thought it converged to zero

Remembering the well known expansion...

$\displaystyle e^{\lambda} = \sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!}\ (1)$

... it is immediate to write...

$\displaystyle e^{- \lambda}\ \sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!}= e^{-\lambda}\ e^{\lambda} = 1\ (2)$

Kind regards

$\chi$ $\sigma$
 
nacho said:
For question 3,
I understand how they get a $\frac{1}{1+b-a}$ in the denominator, but not how they set up the rest.
for example if Y = min(0,X)
then Y>0 is impossible because the min(0,X) restricts the value of Y to 0. Thus making $P(Y>0) = 0$
Similarly, $P(Y<a) = 0$ since the bounds are restricted from $a<0<b$.

for $y=0$ this can occur when X takes any value over $[0,b]$. There are $b+1$ such values.

However, for $a<y<0$, aren't there $0-a+1$ such values? Why do they simply have a $1$ in the numerator.

If X is uniformely distributed in $a \le X \le b$ and is $a < 0$ then... $\displaystyle P \{X = k \} = \frac{1}{1 + b - a}\ \forall k\ \text{with}\ a \le k \le b\ (1)$

If $Y = \text{min}\ (0,X)$ then is $\displaystyle P \{Y = k \} = \frac{1}{1 + b - a}\ \forall k\ \text{with}\ a \le k \le - 1$, $\displaystyle P \{Y = k \} = \frac{1+b}{1 + b - a}\ \text{if}\ k =0$ and 0 for all other k... Kind regards $\chi$ $\sigma$
 
Last edited:
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...
I'm taking a look at intuitionistic propositional logic (IPL). Basically it exclude Double Negation Elimination (DNE) from the set of axiom schemas replacing it with Ex falso quodlibet: ⊥ → p for any proposition p (including both atomic and composite propositions). In IPL, for instance, the Law of Excluded Middle (LEM) p ∨ ¬p is no longer a theorem. My question: aside from the logic formal perspective, is IPL supposed to model/address some specific "kind of world" ? Thanks.
I was reading a Bachelor thesis on Peano Arithmetic (PA). PA has the following axioms (not including the induction schema): $$\begin{align} & (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\ & (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\ & (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\ & (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\ & (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\ & (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber...
Back
Top