1. The problem statement, all variables and given/known data(adsbygoogle = window.adsbygoogle || []).push({});

A particle with mass m moving in the positive x -direction (i.e. from left to right) is incident on a potential step of height V0 at x = 0 so that the potential experienced by the particle is;

V(x) = 0 for x < 0 and V(x) = V0 for x ≥ 0

2. Relevant equations

Determine the time-independent wave function for the particle in the case where the particle energy, E, is greater than V0. This case corresponds to the solution for an ‘unbound’ particle (E > V0). Write your wave functions using complex notation; let the amplitudes of the incident, reflected and transmitted waves be CI, CR and

CT respectively. Define the wavenumber, k, in the region x < 0 and the wavenumber

k' in the region x ≥ 0 .

3. The attempt at a solution

ψ(x) = CI*eikx + CR*e-ikx for x < 0 (is probably the first part of the equation).

My main problem is what to do with the second one, as the particle is constantly 'under the influence' of the potential V0 and at the same time I have to find CT when the wave has not been exactly transmitted so the equation can't just be CT*eikx(in my point of view)

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Unbound particle through potential

Loading...

Similar Threads - Unbound particle through | Date |
---|---|

Expectation values of unbounded operator | May 19, 2014 |

Unbounded Hamiltonian leading to finite ground state | Dec 28, 2013 |

Composite system, rigged Hilbert space, bounded unbounded operator, CSCO, domain | Jan 31, 2013 |

Unbounded operators in QM | Jan 28, 2013 |

Unbounded operators in non-relativistic QM of one spin-0 particle | Apr 3, 2009 |

**Physics Forums - The Fusion of Science and Community**