Uncertainty in spin on multiple axes

Click For Summary
SUMMARY

The discussion centers on the implications of the Uncertainty Principle in quantum mechanics, specifically regarding electron spin measurements on different axes. It establishes that knowing an electron's spin on one axis, such as the z-axis, prevents knowledge of its spin on another axis, like the x-axis. The application of the spin operator σ on the x-axis to the z-axis eigenstate |z_+⟩ results in the spin down state |z_-⟩, illustrating that |z_+⟩ is not an eigenvector of σ_x. The conversation concludes that the uncertainty principle is indeed relevant, as the non-commutation of σ_z and σ_x means that a definite value for one axis precludes a definite value for the other.

PREREQUISITES
  • Quantum mechanics fundamentals
  • Understanding of spin operators (σ_x, σ_z)
  • Familiarity with eigenstates and eigenvalues
  • Knowledge of the Heisenberg-Robertson uncertainty relation
NEXT STEPS
  • Study the mathematical formulation of the Heisenberg-Robertson uncertainty relation
  • Explore the concept of non-commuting operators in quantum mechanics
  • Learn about the implications of spin measurements in quantum systems
  • Investigate the relationship between quantum states and measurement outcomes
USEFUL FOR

Students and professionals in quantum mechanics, physicists specializing in particle physics, and anyone interested in the foundational principles of quantum theory and measurement uncertainty.

space-time
Messages
218
Reaction score
4
In my quantum mechanical studies, I came across the information that if you know an electron's spin on one axis, then you can not know its spin on another axis. For example, if you know that an electron is spin up on the z-axis, then apparently due to the Uncertainty Principle, you can not know whether it is spin right or left on the x-axis.

However, I also found out that apparently you can still apply spin operators to eigenstates that don't correspond to that particular spin operator.

Example: For the spin operator σ on the x-axis:

σ11 and σ22= 0
σ12 and σ21 = 1

Now if you apply this operator to the spin up eigenstate <1 , 0> (which corresponds to the z-axis), then the product of your matrix vector multiplication comes out to be:

<0 , 1> (which is the spin down state on the z-axis)

Now what exactly does this mean physically? I initially thought that the fact that you can apply the x-axis spin operator to a z-axis eigenstate and simply get a flipped z-axis eigenstate meant that spin up on the z-axis would turn into spin left on the x-axis (since spin down and spin left are both -1 eigenvalues) if you were to redo a measurement of spin on the x-axis this time. However, wouldn't that interpretation violate the uncertainty principle since I would know that spin up on the z-axis = spin left on the x-axis? If this interpretation is incorrect, then what exactly is the implication of the result of applying a spin operator to an eigenstate for another axis?
 
Physics news on Phys.org
You applied ##\sigma_x## to ##|z_+\rangle## (that is, the eigenvector of ##\sigma_z## with eigenvalue 1) and got a different vector, ##|z_-\rangle##, back. All that tells you is that ##|z_+\rangle## is not an eigenvector of ##\sigma_x##, and we already knew that.

If you want to calculate the results of a spin measurement along the x-axis of a particle in the state ##|z_+\rangle##, you have to rewrite ##|z_+\rangle## in terms of the eigenvectors of ##\sigma_x##: ##|z_+\rangle = \frac{\sqrt{2}}{2}(|x_+\rangle + |x_-\rangle)##. Now you can see that the measurement along the x-axis will yield +1 or -1 (the eigenvalues of ##\sigma_x##), each with 50% probability.
 
I do not think this has anything to do with the uncertainty principle. There are three independent variables the spin in the x-direction, the spin in the y-direction, and the spin in the z-direction. Knowing one of these tell you nothing about the other two.
 
edpell said:
I do not think this has anything to do with the uncertainty principle. There are three independent variables the spin in the x-direction, the spin in the y-direction, and the spin in the z-direction. Knowing one of these tell you nothing about the other two.

On the contrary, it is directly related to the uncertainty principle and is in some ways a clearer expression of the modern understanding of that principle than the older "measuring the position disturbs the momentum, and vice versa".

To have a definite value of the spin along the z-axis we must prepare the system in an eigenstate of ##\sigma_z##. Because ##\sigma_z## does not commute with ##\sigma_x## that state cannot also be an eigenstate of ##\sigma_x## and therefore cannot have a definite value for the spin along the x-axis. If we tried something that did commute with ##\sigma_z##, we wouldn't have this problem; for example, we could prepare the system in such a way that the spin along the z-axis and the magnitude of the total spin both had definite values.
 
The general Heisenberg-Robertson uncertainty relation reads
##\Delta \sigma_z \Delta \sigma_x \geq \frac{1}{2} |\langle [\hat{\sigma_z},\hat{\sigma}_x \rangle|.##
If you take an eigenvector of ##\sigma_z##, it doesn't tell you anything, because then the right-hand side is vanishing and thus the uncertainty relation trivially fulfilled.
 
Time reversal invariant Hamiltonians must satisfy ##[H,\Theta]=0## where ##\Theta## is time reversal operator. However, in some texts (for example see Many-body Quantum Theory in Condensed Matter Physics an introduction, HENRIK BRUUS and KARSTEN FLENSBERG, Corrected version: 14 January 2016, section 7.1.4) the time reversal invariant condition is introduced as ##H=H^*##. How these two conditions are identical?

Similar threads

  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
5K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K