Understanding Attenuation Lengths for Radioactive Materials in Hollow Spheres

  • Context: Graduate 
  • Thread starter Thread starter Marioqwe
  • Start date Start date
  • Tags Tags
    Attenuation Length
Click For Summary
SUMMARY

This discussion focuses on calculating attenuation lengths for radioactive materials within hollow spheres. The key equation used is L = -λln(rand(0,1)), where L represents the length of travel for gamma rays emitted from a small radioactive sphere placed inside a larger non-radioactive hollow sphere. If the calculated length L exceeds the distance within the inner sphere, a new length L' must be calculated for the outer material. The process involves summing the lengths if both materials are identical or recalculating for different materials.

PREREQUISITES
  • Understanding of gamma radiation and its properties
  • Familiarity with the concept of attenuation length
  • Knowledge of the mathematical equation L = -λln(rand(0,1))
  • Basic principles of radioactive decay and absorption
NEXT STEPS
  • Research the properties of different materials affecting gamma ray attenuation
  • Study the mathematical derivation of attenuation lengths in various geometries
  • Explore Monte Carlo simulations for modeling particle interactions
  • Learn about the applications of attenuation lengths in radiation shielding
USEFUL FOR

Physicists, radiation safety professionals, and anyone involved in nuclear engineering or materials science will benefit from this discussion.

Marioqwe
Messages
65
Reaction score
4
Hello, I am reading this article in wikipedia http://en.wikipedia.org/wiki/Attenuation_length about attenuation lengths and there is something I'm hoping someone here can explain to me.

Lets say I have one small solid sphere and one big hollow sphere. And let's say I put the small sphere within the hollow part of the big one.
Now, somehow the small sphere is radioactive and it emits gamma rays. The big sphere is made of a different material (not radioactive). Also, let's say I have solved the equation in the wiki article for the length L = -λln(rand(0,1)). Then, I solve for L using λ for the radioactive material. But what happens if this L happens to be big enough to exit the first material and it goes into the second one. Would I have to calculate L again using λ for the non-radioactive material?
 
Physics news on Phys.org
You want to calculate a random length L (for a single particle) for the flight distance to the point of absorption? In this case, if both materials are equal, just add the lengths in the materials. Alternatively, if L is longer than the flight distance in the inner object, do the same calculation again for the outer object, with a new L' for the length in this material only.
 
mfb said:
You want to calculate a random length L (for a single particle) for the flight distance to the point of absorption?

Exactly.

mfb said:
In this case, if both materials are equal, just add the lengths in the materials. Alternatively, if L is longer than the flight distance in the inner object, do the same calculation again for the outer object, with a new L' for the length in this material only.

Thank you.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
5K