Understanding Hamiltonian Conservation Laws

Click For Summary
SUMMARY

The discussion centers on Hamiltonian conservation laws, specifically how to derive conserved quantities from the Hamiltonian. It is established that if the Hamiltonian does not explicitly depend on time, it is conserved. The relationship between conserved quantities and symmetries is explained through Noether's theorem, emphasizing that the generator of a symmetry transformation corresponds to a conserved quantity. The use of Poisson brackets is crucial for deriving these relationships, and the discussion highlights the mathematical framework necessary for understanding these concepts.

PREREQUISITES
  • Understanding of Hamiltonian mechanics
  • Familiarity with Poisson brackets
  • Knowledge of phase-space functions
  • Basic calculus and differential equations
NEXT STEPS
  • Study Hamiltonian mechanics and its applications in classical mechanics
  • Learn about Poisson brackets and their role in mechanics
  • Explore Noether's theorem and its implications in physics
  • Practice deriving conserved quantities from Hamiltonians using specific examples
USEFUL FOR

Students and professionals in physics, particularly those focusing on classical mechanics, theoretical physics, and mathematical physics. This discussion is beneficial for anyone looking to deepen their understanding of conservation laws and symmetries in Hamiltonian systems.

Physgeek64
Messages
245
Reaction score
11
I'm a little confused about the hamiltonian.

Once you have the hamiltonian how can you find conserved quantities. I understand that if it has no explicit dependence on time then the hamiltonian itself is conserved, but how would you get specific conservation laws from this?

Many thanks
 
Physics news on Phys.org
Unfortunately you do not tell us about your level. Do you know Poisson brackets? If so, you question is quite easy to answer. Suppose you have an arbitrary phase-space function ##f(t,q^k,p_j)## (##k,j \in \{1,\ldots,f \}##) then the total time derivative is
$$\frac{\mathrm{d}}{ \mathrm{d} t} f=\dot{q}^k \frac{\partial f}{\partial q^k}+\dot{p}_j \frac{\partial f}{\partial p_j} + \partial_t f,$$
where the latter partial time derivative refers to the explicit time dependence of ##f## only. Now use the Hamilton equations of motion
$$\dot{q}^k=\frac{\partial H}{\partial p_k}, \quad \dot{p}_j=-\frac{\partial H}{\partial q^j}.$$
Plugging this in the time derivative you get
$$\frac{\mathrm{d}}{ \mathrm{d} t} f=\frac{\partial f}{\partial q^k} \frac{\partial H}{\partial p_k} - \frac{\partial f}{\partial p_j} \frac{\partial H}{\partial q^j} + \partial_t f=\{f,H \}+\partial_t f.$$
A quantity is thus obviously conserved by definition if this expression vanishes.

Applying this to the Hamiltonian itself you get
$$\frac{\mathrm{d}}{\mathrm{d} t} H=\{H,H\}+\partial_t H=\partial_t H,$$
i.e., ##H## is conserved (along the trajectory of the system) if and only if it is not explicitly time dependent.

Now an infinitesimal canonical transformation is generated by an arbitrary phase-space distribution function ##G##,
$$\delta q^k=\frac{\partial G}{\partial p_k}\delta \alpha=\{q^k,G\} \delta \alpha, \quad \delta p_j=-\frac{\partial G}{\partial q^j} \delta \alpha =\{p_j,G \} \delta \alpha, \quad \delta H=\partial_t G \delta \alpha.$$
From this it is easy to show that
$$H'(t,q+\delta q,p+\delta p) = H(t,q,p),$$
i.e., that the infinitesimal canonical transformation is a symmetry of the Hamiltonian, if and only if
$$\{H,G \}+\partial_t G=0,$$
but that means that
$$\frac{\mathrm{d}}{\mathrm{d} t} G=0$$
along the trajectory of the system, i.e., the generator of a symmetry transformation is a conserved quantity, and also any conserved quantity is the generator of a symmetry transformation. That means that there's a one-to-one relation between the generators of symmetries and conserved quantities, which is one of Noether's famous theorems.
 
vanhees71 said:
Unfortunately you do not tell us about your level. Do you know Poisson brackets? If so, you question is quite easy to answer. Suppose you have an arbitrary phase-space function ##f(t,q^k,p_j)## (##k,j \in \{1,\ldots,f \}##) then the total time derivative is
$$\frac{\mathrm{d}}{ \mathrm{d} t} f=\dot{q}^k \frac{\partial f}{\partial q^k}+\dot{p}_j \frac{\partial f}{\partial p_j} + \partial_t f,$$
where the latter partial time derivative refers to the explicit time dependence of ##f## only. Now use the Hamilton equations of motion
$$\dot{q}^k=\frac{\partial H}{\partial p_k}, \quad \dot{p}_j=-\frac{\partial H}{\partial q^j}.$$
Plugging this in the time derivative you get
$$\frac{\mathrm{d}}{ \mathrm{d} t} f=\frac{\partial f}{\partial q^k} \frac{\partial H}{\partial p_k} - \frac{\partial f}{\partial p_j} \frac{\partial H}{\partial q^j} + \partial_t f=\{f,H \}+\partial_t f.$$
A quantity is thus obviously conserved by definition if this expression vanishes.

Applying this to the Hamiltonian itself you get
$$\frac{\mathrm{d}}{\mathrm{d} t} H=\{H,H\}+\partial_t H=\partial_t H,$$
i.e., ##H## is conserved (along the trajectory of the system) if and only if it is not explicitly time dependent.

Now an infinitesimal canonical transformation is generated by an arbitrary phase-space distribution function ##G##,
$$\delta q^k=\frac{\partial G}{\partial p_k}\delta \alpha=\{q^k,G\} \delta \alpha, \quad \delta p_j=-\frac{\partial G}{\partial q^j} \delta \alpha =\{p_j,G \} \delta \alpha, \quad \delta H=\partial_t G \delta \alpha.$$
From this it is easy to show that
$$H'(t,q+\delta q,p+\delta p) = H(t,q,p),$$
i.e., that the infinitesimal canonical transformation is a symmetry of the Hamiltonian, if and only if
$$\{H,G \}+\partial_t G=0,$$
but that means that
$$\frac{\mathrm{d}}{\mathrm{d} t} G=0$$
along the trajectory of the system, i.e., the generator of a symmetry transformation is a conserved quantity, and also any conserved quantity is the generator of a symmetry transformation. That means that there's a one-to-one relation between the generators of symmetries and conserved quantities, which is one of Noether's famous theorems.

Sorry- no I don't know about Poisson brackets- I'm a complete novice. Haven't encountered hamiltonians before, nor do I know much about them.

Thank you for your response though! Unfortunately I can't see any of the maths you've included- For some reason my computer thinks its an error
 
Physgeek64 said:
Unfortunately I can't see any of the maths you've included- For some reason my computer thinks its an error

Right-click on the math error, go to Math Settings -> Math Renderer and try e.g. HTML-CSS (or some other renderer).
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
646
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 28 ·
Replies
28
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K