I Understanding Holonomic Constraints: Common Questions and Answers

AI Thread Summary
Holonomic constraint equations are crucial for understanding the dynamics of a system with multiple particles. To ensure all constraints are accounted for, there is no universal rule, but a thorough analysis of the system's degrees of freedom can help. Independent holonomic constraints mean that no constraint can be expressed as a combination of others, which is essential for accurately describing the system. The uniqueness of holonomic constraints depends on the specific system; multiple expressions can represent the same constraint as long as they capture the same physical limitations. Understanding these concepts is vital for effectively applying holonomic constraints in physics and engineering contexts.
Ahmed1029
Messages
109
Reaction score
40
I've got a couple of questions concerning holonomic constraint equations:

1- Suppose I've got k holonomic constraint equations for n particles, how can I be sure those are all the ones there are and I didn't miss any? I mean, in a given situation, I can be pretty sure that I've got all, but is there a general rule about the number of constraint equations that are sufficient?

2- What does "independent holonomic constrains equatiins" mean? My book always insists they have to be independent. Does it simply mean none of them is a scalar multiple of the other?

3- Suppose I've got n holonomic constraint equatione that completely capture the constraint forces, are they unique?
 
Physics news on Phys.org
1) Unsure what you mean by this. This obviously depends on the system you are trying to describe.

2) That none of the constraints can be deduced from the others. If the constraints are linear, then it means no constraint is a linear combination of the others, but constraints need not be linear.

3) No, not necessarily. Any other expression that captures the same constraint will do.
 
  • Like
Likes vanhees71 and Ahmed1029
that's what I was looking for! thanks!
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top