Understanding Infinity: Positive vs. Negative Infinity Explained

  • Context: MHB 
  • Thread starter Thread starter lastochka
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary

Discussion Overview

The discussion revolves around the concept of positive and negative infinity in the context of limits in calculus. Participants explore the reasoning behind why certain limits approach positive infinity while others approach negative infinity, particularly through the example of the expression involving the square root function.

Discussion Character

  • Exploratory
  • Mathematical reasoning

Main Points Raised

  • One participant expresses confusion about why a limit results in positive infinity and questions whether it is due to approaching from the right side.
  • Another participant suggests taking the limit of the expression $\sqrt{x^2+7x+1}$ as $x$ approaches $-\infty$, noting that it results in positive infinity, while $x$ itself approaches negative infinity.
  • A different method is proposed involving the substitution $u=-\frac{1}{x}$, leading to a limit that also approaches positive infinity.
  • Clarifications are made regarding the implications of limits approaching negative infinity and how they relate to the overall expression.
  • Participants discuss the behavior of the limits and how they can be interpreted intuitively, emphasizing the importance of the signs involved in the calculations.

Areas of Agreement / Disagreement

Participants generally agree on the mathematical reasoning behind the limits approaching positive and negative infinity, but there is no explicit consensus on a singular explanation for the initial confusion regarding the signs and their implications.

Contextual Notes

Some participants mention the need for proper formatting in mathematical expressions, indicating potential limitations in communication. There are also unresolved aspects regarding the intuitive understanding of approaching infinity from different directions.

lastochka
Messages
29
Reaction score
0
View attachment 3871
Hello,
sorry I tried to use Latex, but it didn't work...I uploaded picture of what I did instead.
I have a small question about the answer which is infinity why this is positive infinity? I know that correct answer is positive infinity, but I am trying to find explanation why...How do we know it is positive and not negative? Is it only because we are coming from the right side? I am very confused with this question. Also in which case there is negative infinity?
Thank you so much
 

Attachments

  • DSC08639 - Copy (640x480).jpg
    DSC08639 - Copy (640x480).jpg
    26.4 KB · Views: 128
Last edited:
Physics news on Phys.org
Hello. Remember to enclose you latex with dollar signs or with the math tag.
So with regards to your question, take the limit of $\sqrt{x^2+7x+1}$ as x goes to $ -\infty$ and the same for x. You will find that the first is equal to $ \infty$ and the second to $- \infty$. Now go back to the original question. You have $\sqrt{x^2+7x+1}-x$. Plug in the solutions. $\infty - (- \infty)$ is equal to $\infty$. I hope that helps. That's the mathematical part. As for the conceptual part, I'll leave that to someone else who can explain better than me. :)
 
Another method to consider is to make the substitution:

$$u=-\frac{1}{x}$$

and our limit becomes:

$$\lim_{u\to0}\frac{\sqrt{u^2-7u+1}+1}{u}=\infty$$
 
ineedhelpnow said:
Hello. Remember to enclose you latex with dollar signs or with the math tag.
So with regards to your question, take the limit of $\sqrt{x^2+7x+1}$ as x goes to $ -\infty$ and the same for x. You will find that the first is equal to $ \infty$ and the second to $- \infty$. Now go back to the original question. You have $\sqrt{x^2+7x+1}-x$. Plug in the solutions. $\infty - (- \infty)$ is equal to $\infty$. I hope that helps. That's the mathematical part. As for the conceptual part, I'll leave that to someone else who can explain better than me. :)
Thank you so much! I was wandering what I am doing wrong with Latex lol

You said that x will go to negative infinity...is it because it has negative sign?

Thank you again for helping me. I know it is probably easy question, but I am very new to this...
 
What ineedhelpnow meant was that $\lim_{{x}\to{-\infty}}x=-\infty$. So (intuitively), $\lim_{{x}\to{-\infty}}\sqrt{x^2+7x+1}-x=\lim_{{x}\to{-\infty}}\sqrt{x^2+7x+1}-\lim_{{x}\to{-\infty}}x= \infty-(-\infty)=+\infty$.
MarkFL said:
Another method to consider is to make the substitution:

$$u=-\frac{1}{x}$$
Now, I just wanted to point something out here that was implied. Notice that for $u=-\frac{1}{x}$, $\lim_{{x}\to{-\infty}}-\frac{1}{x}=\lim_{{x}\to{\infty}}\frac{1}{x}$, which is tending to 0 from the positive side. Thus, in terms of $u$, we have $\lim_{{u}\to{0^+}}u$. So in fact, explicitely, we have $\lim_{u\to0^+}\frac{\sqrt{u^2-7u+1}+1}{u}$. Note that the top is always greater than 0, and $u>0$. A very large number over a very small positive number going to 0 is positive infinity.
 
Rido12 said:
What ineedhelpnow meant was that $\lim_{{x}\to{-\infty}}x=-\infty$. So (intuitively), $\lim_{{x}\to{-\infty}}\sqrt{x^2+7x+1}-x=\lim_{{x}\to{-\infty}}\sqrt{x^2+7x+1}-\lim_{{x}\to{-\infty}}x= \infty-(-\infty)=+\infty$.Now, I just wanted to point something out here that was implied. Notice that for $u=-\frac{1}{x}$, $\lim_{{x}\to{-\infty}}-\frac{1}{x}=\lim_{{x}\to{\infty}}\frac{1}{x}$, which is tending to 0 from the positive side. Thus, in terms of $u$, we have $\lim_{{u}\to{0^+}}u$. So in fact, explicitely, we have $\lim_{u\to0^+}\frac{\sqrt{u^2-7u+1}+1}{u}$. Note that the top is always greater than 0, and $u>0$. A very large number over a very small positive number going to 0 is positive infinity.

Thank you so much, Rido12! It is all clear now!
Thank you, everyone for help!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
4
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
5
Views
2K
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K