Understanding Right-Continuity in Piecewise Functions: What is g(c)?

  • Context: MHB 
  • Thread starter Thread starter phrox
  • Start date Start date
  • Tags Tags
    Continuity
Click For Summary
SUMMARY

The discussion centers on understanding right-continuity in piecewise functions, specifically regarding the function f(x) with discontinuities at x=1, x=3, and x=5. The function is left-continuous at x=1 and has a jump discontinuity, while at x=5, it is right-continuous but also has a jump discontinuity. The key point is that to make g(c) right-continuous at c=1, the value assigned should be g(1)=3, contradicting the initial assumption that c=5 was correct. The graph provided illustrates these discontinuities, emphasizing the importance of accurately interpreting the function's behavior at these critical points.

PREREQUISITES
  • Understanding of piecewise functions
  • Knowledge of continuity and discontinuity types (jump, removable)
  • Familiarity with limits and their definitions
  • Ability to interpret graphical representations of functions
NEXT STEPS
  • Study the definition and properties of left-continuity in functions
  • Learn about removable discontinuities and how to identify them
  • Explore the concept of right-continuity and its implications for piecewise functions
  • Review examples of piecewise functions with discontinuities to solidify understanding
USEFUL FOR

Students and educators in calculus, mathematicians analyzing piecewise functions, and anyone seeking to deepen their understanding of continuity concepts in mathematical analysis.

phrox
Messages
40
Reaction score
1
I don't really understand this question...

I'm given a graph with x approaching and hitting 1, making y=2 (filled dot). Then there's a discontinuity jump at (1,3) which is the empty dot, then there's 2 other points on this small curve with empty dots at (3,4.5) and at (5,4), then another jump to a filled dot at (5,1).

For the first question being find point c that the function has jump discontinuity but is left-continuous which I know would be c=5.

It's the second question that doesn't make sense to me. It is:
What value should you assign to g(c) to make f right - continuous at x=c?

This question just doesn't make sense to me. What is g(c) on the graph? The empty dotted curve? Would by "f" he meant the whole f(x) function which has discontinuity?

Thanks!
 
Physics news on Phys.org
Can you include an image of the graph?
 
Sure thing,

http://i1301.photobucket.com/albums/ag115/phrox1/graph_zps49a57ee8.png
 
phrox said:
http://i1301.photobucket.com/albums/ag115/phrox1/graph_zps49a57ee8.png

phrox said:
Then there's a discontinuity jump at (1,3) which is the empty dot, then there's 2 other points on this small curve with empty dots at (3,4.5) and at (5,4), then another jump to a filled dot at (5,1).
For the first question being find point c that the function has jump discontinuity but is left-continuous which I know would be c=5.
It's the second question that doesn't make sense to me. It is:
What value should you assign to g(c) to make f right - continuous at x=c?
This question just doesn't make sense to me. What is g(c) on the graph? The empty dotted curve? Would by "f" he meant the whole f(x) function which has discontinuity?

I do not really follow some of this question, but the graph helps.
The function $$f$$ has a jump discontinuity at $$x=1$$ but it is left-continuous there.
The function $$f$$ has a jump discontinuity at $$x=5$$ but it is lright-continuous there.
See this web page.

The function $$f$$ has an discontinuity at $$x=3$$ that some call a removable discontinuity .
 
If g(x) = f(x) except for at points of discontinuity of f, then to make g right-continuous at c = 1 (which is the only place where f has a jump discontinuity but is left-continuous, your answer of c = 5 is wrong) we must choose g(1) = 3.

This is just a conjecture on my part, you haven't told us what "g" is. A summary of the discontinuities at f:

x = 1:

f is left-continuous, and has a jump discontinuity

x = 3

f is neither left-continuous nor right-continuous and has a jump discontinuity. if we were to replace the value f(3) = 2.5 (approx.) with f(3) = 4.5 (approx., it is REALLY hard to tell from your graph) f would be continuous at 3 (which is why the continuity is called "removable")

x = 5

f is right-continuous and has a jump discontinuity.

Neither the discontinuity at 1, nor at 5 can be fixed by assigning some "other" value for f(x), the resulting function will still be discontinuous there (sometimes these are called "essential" discontinuities).
 
I do agree with that. But for the second question, it doesn't make sense because there has to be an answer according to my prof. He said if it doesn't exist, put DNE. But that doesn't work.

Also, 1) is correct at c=5 because it just simply says it's correct when I have it right.
 
It? What is this "it"?

If by "it" you mean some automated software on a computer-graded test/problem set, I can assure you "it" most certainly can be wrong:

1) The program could have an internal error.
2) Whichever human supplied the "answer data file" could have made a mistake.

In general, mathematical statements are not true because someone or something says they are, they are true because they are logically consistent with, and dependent upon other facts or axioms given before-hand. "Proof by authority" is NOT accepted by the mathematical community at large.

IF (and this is actually a big "if") you have portrayed the graph of f(x) reasonably accurately (in particular, if the holes are solid or "hollow" at the "special points" as you depict it) then f is NOT left-continuous at c = 5.

I state the formal definition of left-continuous here:

A function $f:\Bbb R \to \Bbb R$ is said to be left-continuous at $a$ if:

$\displaystyle \lim_{x \to a-} f(x) = f(a)$.

From the graph you have supplied, we see that:

$\displaystyle \lim_{x \to 5-} f(x) = 4$

but $f(5) = 1$

As 4 does not equal 1, the matter is settled, and anyone who says differently is just wrong.

Perhaps we are missing some crucial information here, but it sounds like someone has confused left with right.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
4K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 3 ·
Replies
3
Views
4K
Replies
2
Views
2K