- #1
phyzmatix
- 313
- 0
Homework Statement
In relativistic wave mechanics the dispersion relation for an electron of velocity [tex]v=\frac{\hbar k}{m}[/tex] is given by [tex]\frac{\omega ^2}{c^2}=k^2 + \frac{m^2 c^2}{\hbar ^2}[/tex] where c is the velocity of light, m is the electron mass (considered constant at a given velocity) [tex]\hbar=\frac{h}{2\pi}[/tex] and h is Planck's constant.
Show that the product of the group and particle velocities is [tex]c^2[/tex]
Homework Equations
[tex]v_g=\frac{d\omega}{dk}[/tex]
The Attempt at a Solution
From the dispersion relation I got
[tex]\frac{\omega ^2}{c^2}=k^2 + \frac{m^2 c^2}{\hbar ^2}[/tex]
[tex]\omega = c\sqrt{k^2 + \frac{m^2c^2}{\hbar ^2}}[/tex]
so that
[tex]v_g=\frac{d\omega}{dk}[/tex]
[tex]v_g=\frac{d}{dk}(c\sqrt{k^2 + \frac{m^2c^2}{\hbar ^2}})[/tex]
[tex]v_g=\frac{ck}{\sqrt{k^2 + \frac{m^2c^2}{\hbar ^2}}}[/tex]
But this answer, multiplied with the particle velocity will obviously not give c^2. What am I missing?
Thanks!
phyz