Understanding Theorem 13 from Calculus 7th ed, R. Adams, C. Essex, 4.10

Click For Summary

Discussion Overview

The discussion revolves around Theorem 13 from Calculus, specifically regarding the properties of big-O notation and Taylor polynomials. Participants explore the implications of the theorem, its proof, and the algebra involved in understanding the relationship between polynomials and their approximations as they approach a limit.

Discussion Character

  • Technical explanation
  • Conceptual clarification
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants discuss the properties of big-O notation and how they relate to Taylor's Theorem, emphasizing the conditions under which certain functions can be approximated.
  • There is a focus on the proof of Theorem 13, particularly the expression for the remainder term ##R_n(x)## and its implications if it is not identically zero.
  • One participant questions the algebraic manipulation of the remainder term, seeking clarification on how it can be expressed in a certain form based on the coefficients of the polynomial.
  • Another participant suggests that a limit involving the remainder term should be expressed differently, indicating a potential misunderstanding or confusion regarding the proof.
  • Some participants express cognitive dissonance regarding the conditions of the theorem and how coefficients relate to the polynomial's identity.
  • A later reply introduces an example involving the Maclaurin polynomial for the hyperbolic cosine function, raising questions about the conditions under which the theorem applies.
  • There is a challenge regarding the necessity of equality between the Taylor polynomial and the polynomial of degree at most n, with some participants seeking justification for this requirement.

Areas of Agreement / Disagreement

Participants express varying levels of understanding and confusion regarding the theorem and its proof. There is no consensus on the interpretation of certain algebraic steps or the necessity of equality between the polynomials, indicating ongoing debate and exploration of the topic.

Contextual Notes

Some participants highlight limitations in their understanding of the algebra involved in the proof, particularly regarding the manipulation of coefficients and the implications of the remainder term. There are unresolved questions about the conditions under which the theorem can be applied to new functions.

mcastillo356
Gold Member
Messages
660
Reaction score
364
TL;DR
I'm sweating to understand it. There is a reasoning, under an assumption, that it will happen to be contradictory that some polynomial is not identically zero. The algebra is difficult to me.
The following properties of big-O notation follow from the definition:

(i) if ##f(x)=O(u(x))## as ##x\rightarrow{a}##, then ##Cf(x)=O(u(x))## as ##x\rightarrow{a}## for any value of the constant ##C##.
(ii) If ##f(x)=O(u(x))## as ##x\rightarrow{a}## and ##g(x)=O(u(x))## as ##x\rightarrow{a}##, then ##f(x)\pm{g(x)}=O(u(x))## as ##x\rightarrow{a}##.
(iii) If ##f(x)=O((x-a)^{k}u(x))## as ##x\rightarrow{a}##, then ##f(x)/(x-a)^{k}=O(u(x))## as ##x\rightarrow{a}## for any constant ##k##.

Taylor's Theorem says that if ##f^{(n+1)}(t)## exists on an interval containing ##a## and ##x##, and ##P_n## is the ##n##th-order Taylor polynomial for ##f## at ##a##, then, as ##x\rightarrow{a}##

$$f(x)=P_{n}(x)+O\Big((x-a)^{n+1}\Big)$$

This is a statement about how rapidly the graph of the Taylor polynomial ##P_{n}(x)## approaches that of ##f(x)## as ##x\rightarrow{a}##; the vertical distance between the graph decreases as fast as ##|x-a|^{n+1}##. The following theorem shows that the Taylor polynomial ##P_{n}(x)## is the only polynomial of degree at most ##n## whose graph approximates the graph of ##f(x)## that rapidly

Theorem 13

If ##f(x)=Q_{n}(x)+O((x−a)n+1)## as ##x→a## where ##Q_n## is a polynomial of degree at most ##n##, then ##Q_{n}(x)=P_{n}(x)##, that is, ##Q_n## is the Taylor polynomial for ##f(x)## at ##x=a##.

PROOF

Let ##P_n## be the Taylor polynomial, then properties (i) and (ii) of Big-O imply that $$R_{n}(x)=Q_{n}(x)−P_{n}(x)=O((x−a)^{(n+1})$$
We want to show that ##R_{n}(x)## is identically zero so that ##Q_n(x)=P_n(x)## for all ##x##. By replacing ##x## with ##a+(x-a)## and expanding powers, we can write ##R_n(x)## in the form $$R_{n}(x)=c_0+c_1(x-a)+c_2(x-a)^2+\ldots+c_n(x-a)^n$$. If ##R_n(x)## is not identically zero, then there is a smalest coefficient ##c_k (k\leq n)##, such that ##c_k\neq 0##, but ##c_j=0## for ##0\leq j\leq {k-1}##, so ##c_k(x-a)^k+c_{k+1}(x-a)^{k+1}+\ldots +c_n(x-a)^{n-k}##. Therefore ##\lim_{x\rightarrow{a}}R_{n}(x)/(x-a)=c_k\neq 0##. However, by property (iii) above we have ##R_{n}(x)/(x-a)^k=O((x-a)^{n+1-k})##. Since ##n+1-k>0##, this says ##R_{n}(x)/(x-a)^{k}\rightarrow{0}## as ##x\rightarrow{a}##. This contradiction shows that ##R_{n}(x)## must be identically zero. Therefore ##Q_{n}(x)=P_{n}(x)## for all ##x##.

The real question is if should I face this theorem naively, or seriosly; if I take it easy, I understand it. If I get obstinate, and want to check right the theorem, then there is a section for which I only got a mess:

How emerges ##R_{n}(x)=(x-a)^k(c_k+c_{k+1}(x-a)+\ldots{+c_n(x-a)^{n-k}})\Rightarrow{R_{n}(x)=(x-a)^k c_k+c_{k+1}(x-a)^{k+1}+\ldots+ c_n(x-a)^n}##?

Because if there is a minimum ##c_k\neq 0(k\leq n)##; this coefficient will be zero if ##0\leq j\leq {k-1}##, this is, in the closed interval ##[0,k-1]##, ##R_{n}(x)=(x-a)^k c_k+c_{k+1}(x-a)^{k+1}+\ldots+ c_n(x-a)^n##. Just factorize
 
Physics news on Phys.org
mcastillo356 said:
TL;DR Summary: I'm sweating to understand it. There is a reasoning, under an assumption, that it will happen to be contradictory that some polynomial is not identically zero. The algebra is difficult to me.

The following properties of big-O notation follow from the definition:

(i) if ##f(x)=O(u(x))## as ##x\rightarrow{a}##, then ##Cf(x)=O(u(x))## as ##x\rightarrow{a}## for any value of the constant ##C##.
(ii) If ##f(x)=O(u(x))## as ##x\rightarrow{a}## and ##g(x)=O(u(x))## as ##x\rightarrow{a}##, then ##f(x)\pm{g(x)}=O(u(x))## as ##x\rightarrow{a}##.
(iii) If ##f(x)=O((x-a)^{k}u(x))## as ##x\rightarrow{a}##, then ##f(x)/(x-a)^{k}=O(u(x))## as ##x\rightarrow{a}## for any constant ##k##.

Taylor's Theorem says that if ##f^{(n+1)}(t)## exists on an interval containing ##a## and ##x##, and ##P_n## is the ##n##th-order Taylor polynomial for ##f## at ##a##, then, as ##x\rightarrow{a}##

$$f(x)=P_{n}(x)+O\Big((x-a)^{n+1}\Big)$$

This is a statement about how rapidly the graph of the Taylor polynomial ##P_{n}(x)## approaches that of ##f(x)## as ##x\rightarrow{a}##; the vertical distance between the graph decreases as fast as ##|x-a|^{n+1}##. The following theorem shows that the Taylor polynomial ##P_{n}(x)## is the only polynomial of degree at most ##n## whose graph approximates the graph of ##f(x)## that rapidly

Theorem 13

If ##f(x)=Q_{n}(x)+O((x−a)n+1)## as ##x→a## where ##Q_n## is a polynomial of degree at most ##n##, then ##Q_{n}(x)=P_{n}(x)##, that is, ##Q_n## is the Taylor polynomial for ##f(x)## at ##x=a##.

PROOF

Let ##P_n## be the Taylor polynomial, then properties (i) and (ii) of Big-O imply that $$R_{n}(x)=Q_{n}(x)−P_{n}(x)=O((x−a)^{(n+1})$$
We want to show that ##R_{n}(x)## is identically zero so that ##Q_n(x)=P_n(x)## for all ##x##. By replacing ##x## with ##a+(x-a)## and expanding powers, we can write ##R_n(x)## in the form $$R_{n}(x)=c_0+c_1(x-a)+c_2(x-a)^2+\ldots+c_n(x-a)^n$$. If ##R_n(x)## is not identically zero, then there is a smalest coefficient ##c_k (k\leq n)##, such that ##c_k\neq 0##, but ##c_j=0## for ##0\leq j\leq {k-1}##, so ##c_k(x-a)^k+c_{k+1}(x-a)^{k+1}+\ldots +c_n(x-a)^{n-k}##. Therefore ##\lim_{x\rightarrow{a}}R_{n}(x)/(x-a)=c_k\neq 0##. However, by property (iii) above we have ##R_{n}(x)/(x-a)^k=O((x-a)^{n+1-k})##. Since ##n+1-k>0##, this says ##R_{n}(x)/(x-a)^{k}\rightarrow{0}## as ##x\rightarrow{a}##. This contradiction shows that ##R_{n}(x)## must be identically zero. Therefore ##Q_{n}(x)=P_{n}(x)## for all ##x##.

The real question is if should I face this theorem naively, or seriosly; if I take it easy, I understand it. If I get obstinate, and want to check right the theorem, then there is a section for which I only got a mess:

How emerges ##R_{n}(x)=(x-a)^k(c_k+c_{k+1}(x-a)+\ldots{+c_n(x-a)^{n-k}})\Rightarrow{R_{n}(x)=(x-a)^k c_k+c_{k+1}(x-a)^{k+1}+\ldots+ c_n(x-a)^n}##?

Because if there is a minimum ##c_k\neq 0(k\leq n)##; this coefficient will be zero if ##0\leq j\leq {k-1}##, this is, in the closed interval ##[0,k-1]##, ##R_{n}(x)=(x-a)^k c_k+c_{k+1}(x-a)^{k+1}+\ldots+ c_n(x-a)^n##. Just factorize
I believe ##\lim_{x\rightarrow{a}}R_{n}(x)/(x-a)=c_k\neq 0## should be $$\lim_{x\rightarrow{a}}R_{n}(x)/(x-a)^k=c_k\neq 0$$ and then the rest seems absolutely straightforward to me (and I am easily confused). Does that help?
 
  • Haha
  • Informative
Likes   Reactions: jedishrfu and mcastillo356
hutchphd said:
I believe ##\lim_{x\rightarrow{a}}R_{n}(x)/(x-a)=c_k\neq 0## should be $$\lim_{x\rightarrow{a}}R_{n}(x)/(x-a)^k=c_k\neq 0$$

Yes.

hutchphd said:
and then the rest seems absolutely straightforward to me (and I am easily confused). Does that help?
Let ##n=3##
##R_{3}(x)=c_0+c_1(x-a)+c_2(x-a)^2+c_3(x-a)^3##, if isn't identically zero, some ##c_i\neq0##. If the smallest non-zero coefficient happens to be zero, ##c_0\neq 0##, there cannot be factorization
 
$$(x-a)^0=1$$. Where does this fail?
 
  • Love
Likes   Reactions: mcastillo356
HI, @hutchphd, PF

hutchphd said:
$$(x-a)^0=1$$. Where does this fail?

It doesn't fail. Your post is been the kick I needed. P&L.

Marcos Castillo

PD: ##c_j\neq 0## for ##0\leq j\leq {k-1}##. How do I harmonize what I perceive as a cognitive dissonance?
 
  • Like
Likes   Reactions: hutchphd
Solved. If ##c_j\neq 0## for ##0\leq j\leq{k-1}##, the textbook is very concrete: "If ##R_{n}(x)## is not identically zero, then there is a smalest coefficient ##c_k(k\leq n)## such that ##c_k##...". If ##k\leq n##, ##0\leq\ldots k-3\leq k-2\leq k-1\leq k\leq n##. Therefore ##c_j## changes to ##c_k##
Solved?
 
Last edited:
"The real importance of Theorem 13 is that it enables us to obtain Taylor polynomials for new functions by combining others already known: as long as the error term - Of those known?- is of higher degree than the order of the polynomial obtained, the polynomial must be the Taylor polynomial."

Example Find the Maclaurin polynomial of order ##2n## for ##\cosh x=\dfrac{e^{x}+e^{-x}}{2}##

The error term of ##e^{-x}## is of lower degree (##O(x^{2n-2})##) than the one of the Maclaurin polynomial ##P_{2n}(x)## for ##\cosh x##: ##O(x^{2n+2})##

There seems to be a contradiction
 
Why must they be equal? Qn is a polynomial of degree at most n.
 
  • Informative
Likes   Reactions: mcastillo356
$$f(x)=Q_{n}(x)+O((x-a)^{n+1})\underrightarrow{_{n\rightarrow{2n+1}}}f(x)=Q_{2n+1}(x)+O((x-a)^{2n+2})



\Rightarrow{e^x=Q_{2n+1}(x)+O((x-a)^{2n+2})}



\Rightarrow{e^x=1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+ \ldots+\dfrac{x^{2n}}{(2n)!}+\dfrac{x^{2n+1}}{(2n+1)!}+ O(x^{2n+2})}$$

$$\Leftrightarrow$$

$$f(x)=P_{n}(x)+O((x-a)^{n+1})\underrightarrow{_{n\rightarrow{2n+1}}}f(x)=P_{2n+1}(x)+O((x-a)^{2n+2})



\Rightarrow{e^x=P_{2n+1}(x)+O((x-a)^{2n+2})}



\Rightarrow{e^x=1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+ \ldots+\dfrac{x^{2n}}{(2n)!}+\dfrac{x^{2n+1}}{(2n+1)!}+ O(x^{2n+2})}$$

Am I well on the track? Does it observe Theorem 13 and why?
 
  • #10
Hi, PF, I think I'm on the track
hutchphd said:
Why must they be equal? Qn is a polynomial of degree at most n.

This is the key: ##Q_n## is at most a polynomial of degree ##n##. The case where obtains the ##2n##-th degree polynomial for ##\cosh x## is a based on a simple substitution, ##n\rightarrow{2n+1}##. No violation of Theorem 13 of the textbook. Carefull and good sense's observance instead.

The real importance of Theorem 13 is that inables us to obtain Taylor polynomials for new functions by combining others already known; as the error term is of higher degree than the order of the polynomial obtained, the polynomial must be the Taylor polynomial.

The sentence in bold typing of the above quote is, in my dilettante opinion, of poor interest. I've tried to find the ephitet to describe it, but no word fits perfectly; redundant, futile, irrelevant, recurrent, resonant; once experienced Taylor's Theorem.

Hope this post written on my own is valid
 
  • #11
mcastillo356 said:
The sentence in bold typing of the above quote is, in my dilettante opinion, of poor interest. I've tried to find the ephitet to describe it, but no word fits perfectly; redundant, futile, irrelevant, recurrent, resonant; once experienced Taylor's Theorem.

Hi, PF,Theorem13 has nothing to see with Taylor's Theorem. It's just algebra.

P&L, Marcos
 

Similar threads

  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 25 ·
Replies
25
Views
4K