chwala
Gold Member
- 2,825
- 413
Am still looking at the literature, i need confirmation on ##6##;
Now we know that;
My understanding- In reference to 6;
Let ##r=3## and ##p=2##, then it follows that,
##3^2+3^2=18\mod2=0##
##(3+3)^2=36\mod2=0##
satisfies definition 2.3.1 (1)##3^2⋅ 3^2=81\mod2=1##
##(3⋅3)^2=81\mod2=1##
satisfies definition 2.3.1 (2)using another example say, ##r=2## and ##p=3##, then it follows that,
##2^3+2^3=16\mod3=1##
##(2+2)^3=64\mod3=1##
satisfies definition 2.3.1 (1)
##2^3⋅ 2^3=64\mod3=1##
##(2⋅2)^3=64\mod3=1##
satisfies definition 2.3.1 (2)thus the pth power map is a ring homomorphism.
Now we know that;
My understanding- In reference to 6;
Let ##r=3## and ##p=2##, then it follows that,
##3^2+3^2=18\mod2=0##
##(3+3)^2=36\mod2=0##
satisfies definition 2.3.1 (1)##3^2⋅ 3^2=81\mod2=1##
##(3⋅3)^2=81\mod2=1##
satisfies definition 2.3.1 (2)using another example say, ##r=2## and ##p=3##, then it follows that,
##2^3+2^3=16\mod3=1##
##(2+2)^3=64\mod3=1##
satisfies definition 2.3.1 (1)
##2^3⋅ 2^3=64\mod3=1##
##(2⋅2)^3=64\mod3=1##
satisfies definition 2.3.1 (2)thus the pth power map is a ring homomorphism.
Last edited: