MHB Uniformity of Poisson arrivals in random interval

Click For Summary
In a Poisson process with a geometric random variable t, the arrival instant is not uniformly distributed in the interval [0,t]. The conditional probability of an arrival occurring before a specific time τ, given that an arrival has occurred before t, does not yield a uniform distribution. The calculations show that the probability of at least one arrival in [0,t] is influenced by the geometric nature of t. Thus, while individual events may appear uniformly distributed in deterministic intervals, the randomness of t alters this uniformity. Therefore, the conclusion is that the arrival instant is not uniform in the context of a geometric random variable.
hemanth
Messages
7
Reaction score
0
Given that an Poisson arrival has occurred in an interval [0,t], where t is geometric with mean (alpha).
Is it true that the arrival instant is uniform in [0,t]?
 
Physics news on Phys.org
hemanth said:
Given that an Poisson arrival has occurred in an interval [0,t], where t is geometric with mean (alpha).
Is it true that the arrival instant is uniform in [0,t]?

In a Poisson process with mean $\lambda$ the probability that n events occurred in [0,t] is...

$$ P \{ N(t)-N(0) = n \} = e^{- \lambda\ t}\ \frac{(\lambda\ t)^{n}}{n!}\ (1)$$

Once You know that one event occurred at the time $\tau$ with $0 < \tau < t$, the $tau$ is uniformly distributed in [0,t]...

Kind regards

$\chi$ $\sigma$
 
Last edited:
hemanth said:
Given that an Poisson arrival has occurred in an interval [0,t], where t is geometric with mean (alpha).
Is it true that the arrival instant is uniform in [0,t]?

Let $T$ be the time of the first arrival, let $\tau$ be an arbitrary time between 0 and t, and let the Poisson distribution have a mean of $\lambda$ arrivals per unit of time.

Then, from the definition of conditional probability:
$$P(T < \tau \ |\ T < t) = \frac{P(T < \tau \wedge T < t)}{P(T<t)} = \frac{P(T < \tau)}{P(T<t)} \qquad (1)$$

From the Poisson distribution we know that:
$$P(T < t) = P(\text{at least 1 arrival in }[0,t]) = 1 - P(\text{0 arrivals in }[0,t]) = 1 - \frac{e^{-\lambda t}(\lambda t)^0}{0!} = 1 - e^{-\lambda t} \qquad (2)$$

So:
$$P(T < \tau \ |\ T < t) = \frac{P(T < \tau)}{P(T<t)} = \frac{1 - e^{-\lambda \tau}}{1 - e^{-\lambda t}} \qquad (3)$$

This is not a uniform distribution.$\qquad \blacksquare$
 
Last edited:
hemanth said:
Given that an Poisson arrival has occurred in an interval [0,t], where t is geometric with mean (alpha).
Is it true that the arrival instant is uniform in [0,t]?

I apologize for the fact that at first I didn't realize that t is a geometric r.v. and not a deterministic r.v., so that I have to better specify my answer. In general in a stationary Poisson process with mean $\lambda$ the probability that n events occur in a time between $\tau$ and $\tau + t$ is... $$P \{ N(\tau + t) - N(\tau) = n\} = e^{- \lambda\ t}\ \frac{(\lambda\ t)^{n}}{n!}\ (1)$$

... and, very important detail, the probability is independent from $\tau$. That means that in the case of one event [n=1], setting $\tau=0$, the event time $t_{0}$ is uniformely distributed in [o,t]. But t is not a deterministic but a geometric variable and that means that we are in the same situation described in...

http://www.mathhelpboards.com/f19/transformation-random-variable-5079/#post23090

Kind regards

$\chi$ $\sigma$
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
882